首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Actin has been found in nuclei of many cell types, but little is known about its form and function. A recent study has shown that a lack of specific export allows actin to accumulate in the nucleus, where it forms a network of actin filaments that may be required to stabilize the giant nucleus of the Xenopus oocyte.  相似文献   

3.
4.
It has become accepted that deep-freeze-drying at or below -90 degrees C is necessary to preserve the structure of supramolecular assemblies such as actin filaments (AFs) for metal shadowing. This has kept the metal shadowing technique from widespread use in the study of proteins complexed with AFs because of the limited availability of the apparatus for deep-freeze-drying. I report here that adsorption to freshly cleaved mica, treatment with buffered uranyl acetate in glycerol solution, rinsing, and removal of liquid eliminate the need of freeze-drying to preserve the structure of AFs. This technique, in combination with metal shadowing, was applied to the study of AFs decorated with heavy meromyosin (HMM). It was observed that (1) when HMM molecules are associated with single AFs in the majority of cases only one head of each HMM molecule makes contact at the point furthest from the neck region; (2) binding of HMM causes bundling of AFs, probably by the two heads of each molecule binding different filaments; and (3) the binding of HMM to the bundled AFs appears to be more stable than that to a single AF. This method of specimen preparation requires no freeze-drying and is therefore easily applicable to other large protein complexes.  相似文献   

5.
Actin-containing filaments have been visualized inside Xenopus oocyte nuclei by a combination of fluorescence and transmission electron microscopy. It was shown that these filaments contact nucleoli, spherical bodies, and nuclear pore complexes. The incubation of oocytes with actin-depolymerizing agent, latrunculin, caused membrane vesiculation in cytoplasm and the disruption of nucleoplasm and the integrity of the nuclear envelope. We suggest that actin-containing filaments are important cell components involved in the regulation of nucleus-cytoplasm interactions, as well as of cellular transport of components during the growth of Xenopus oocytes.  相似文献   

6.
7.
Actin labeling at Cys(374) with tethramethylrhodamine derivatives (TMR-actin) has been widely used for direct observation of the in vitro filaments growth, branching, and treadmilling, as well as for the in vivo visualization of actin cytoskeleton. The advantage of TMR-actin is that it does not lock actin in filaments (as rhodamine-phalloidin does), possibly allowing for its use in investigating the dynamic assembly behavior of actin polymers. Although it is established that TMR-actin alone is polymerization incompetent, the impact of its copolymerization with unlabeled actin on filament structure and dynamics has not been tested yet. In this study, we show that TMR-actin perturbs the filaments structure when copolymerized with unlabeled actin; the resulting filaments are more fragile and shorter than the control filaments. Due to the increased severing of copolymer filaments, TMR-actin accelerates the polymerization of unlabeled actin in solution also at mole ratios lower than those used in most fluorescence microscopy experiments. The destabilizing and severing effect of TMR-actin is countered by filament stabilizing factors, phalloidin, S1, and tropomyosin. These results point to an analogy between the effects of TMR-actin and severing proteins on F-actin, and imply that TMR-actin may be inappropriate for investigations of actin filaments dynamics.  相似文献   

8.
The body wall muscle cells of the nematode, Caenorhabditis elegans, contain two unique types of myosin heavy chain, A and B. We have utilized an immunochemical approach to define the structural location of these two myosins within body wall muscle thick filaments. By immunofluorescence microscopy, myosin B antibodies label the thick filament-containing A-bands of body wall muscle with the exception of a thin gap at the center of each A-band, and myosin A antibodies react to form a medial fluorescent stripe within each A-band. The complexes of these monoclonal antibodies with isolated thick filaments were negatively stained and studied by electron microscopy. The myosin B antibody reacts with the polar regions of all filaments but does not react with a central 0.9 μm zone. The myosin A antibody reacts with a central 1.8 μm zone in all filaments but does not react with the polar regions.  相似文献   

9.
Formins are proteins best defined by the presence of the unique, highly conserved formin homology domain 2 (FH2). FH2 is necessary and sufficient to nucleate an actin filament in vitro. The FH2 domain also binds to the filament's barbed end, modulating its elongation and protecting it from capping proteins. FH2 itself appears to be a processive cap that walks with the barbed end as it elongates.  相似文献   

10.
11.
12.
13.
14.
Taking the advantage of single-molecule imaging, our recent study has revealed surprisingly long processive movement of a Formin protein, mDia1, surfing along with the growing end of actin filaments in living cells. This finding provides direct evidence for the ability of Formins to function as processive cappers that has been postulated from several lines of evidence in biochemical studies. With nucleating filaments from the profilin-actin pool, Formins may effectively generate long actin filaments, and contribute to the generation of the specific actin-based structures, that is, the contractile ring in cytokinesis, actin stress fibers in animal cells, and yeast actin cables. Furthermore, Formins have the potential to function as actin polymerization-driven molecular motors. Although much remains to be tested about the role of this novel molecular mobilization mechanism, cells might utilize actin polymerization energy for cell shape change and/or trafficking via Formin motors.  相似文献   

15.
Cortical actin patches are the most prominent actin structure in budding and fission yeast. Patches assemble, move, and disassemble rapidly. We investigated the mechanisms underlying patch actin assembly and motility by studying actin filament ultrastructure within a patch. Actin patches were partially purified from Saccharomyces cerevisiae and examined by negative-stain electron microscopy (EM). To identify patches in the EM, we correlated fluorescence and EM images of GFP-labeled patches. Patches contained a network of actin filaments with branches characteristic of Arp2/3 complex. An average patch contained 85 filaments. The average filament was only 50-nm (20 actin subunits) long, and the filament to branch ratio was 3:1. Patches lacking Sac6/fimbrin were unstable, and patches lacking capping protein were relatively normal. Our results are consistent with Arp2/3 complex-mediated actin polymerization driving yeast actin patch assembly and motility, as described by a variation of the dendritic nucleation model.  相似文献   

16.
ADP-ribosylated actin caps the barbed ends of actin filaments   总被引:13,自引:0,他引:13  
The mode of action on actin polymerization of skeletal muscle actin ADP-ribosylated on arginine 177 by perfringens iota toxin was investigated. ADP-ribosylated actin decreased the rate of nucleated actin polymerization at substoichiometric ratios of ADP-ribosylated actin to monomeric actin. ADP-ribosylated actin did not tend to copolymerize with actin. Actin filaments were depolymerized by the addition of ADP-ribosylated actin. The maximal monomer concentration reached by addition of ADP-ribosylated actin was similar to the critical concentration of the pointed ends of actin filaments. ADP-ribosylated actin had no effect on the rate of polymerization of gelsolin-capped actin filaments which polymerize at the pointed ends. The results suggest that ADP-ribosylated actin acts as a capping protein which binds to the barbed ends of actin filaments to inhibit polymerization. Based on an analysis of the depolymerizing effect of ADP-ribosylated actin, the equilibrium constant for binding of ADP-ribosylated actin to the barbed ends of actin filaments was determined to be about 10(8) M-1. As actin is ADP-ribosylated by perfringens iota toxin and by botulinum C2 toxin, it appears that conversion of actin into a capping protein by ADP-ribosylation is a pathophysiological reaction catalyzed by bacterial toxins which ultimately leads to inhibition of actin assembly.  相似文献   

17.
Plasma gelsolin caps and severs actin filaments   总被引:5,自引:0,他引:5  
H E Harris  A G Weeds 《FEBS letters》1984,177(2):184-188
Plasma gelsolin caps actin filaments at their 'barbed' ends and severs them along their length. Capping has been demonstrated both by direct visualization using gold-labeled gelsolin and by inhibition of actin polymerization onto the barbed ends of fragments of the acrosomal process of Limulus sperm. Severing activity is demonstrated by the fact that actin filaments nucleated off acrosomal fragments are shortened or removed within a few seconds by added plasma gelsolin without any obvious disruption of the actin bundles in the acrosomal processes themselves.  相似文献   

18.
Structural models of F-actin suggest that three segments in actin, the DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274) and the C-terminus, contribute to the formation of an intermolecular interface between three monomers in F-actin. To test these predictions and also to assess the dynamic properties of intermolecular contacts in F-actin, Cys-374 pyrene-labeled skeletal alpha-actin and pyrene-labeled yeast actin mutants, with Gln-41 or Ser-265 replaced with cysteine, were used in fluorescence experiments. Large differences in Cys-374 pyrene fluorescence among copolymers of subtilisin-cleaved (between Met-47 and Gly-48) and uncleaved alpha-actin showed both intra- and intermolecular interactions between the C-terminus and loop 38-52 in F-actin. Excimer band formation due to intermolecular stacking of pyrene probes attached to Cys-41 and Cys-265, and Cys-41 and Cys-374, in mutant yeast F-actin confirmed the proximity of these residues on the paired sites (to within 18 A) in accordance with the models of F-actin structure. The dynamic properties of the intermolecular interface in F-actin formed by loop 38-52, plug 262-274 and the C-terminus may account for the observed cross-linking of these sites with reagents < 18 A. The functional importance of actin filament dynamics was demonstrated by the inhibition of the in vitro motility in the Gln-41-Cys-374 cross-linked actin filaments.  相似文献   

19.
Two factors have limited studies of the properties of nucleotide-free actin (NFA). First, actin lacking bound nucleotide denatures rapidly without stabilizing agents such as sucrose; and second, without denaturants such as urea, it is difficult to remove all of the bound nucleotide. We used apyrase, EDTA and Dowex-1 to prepare actin that is stable in sucrose and approximately 99 % free of bound nucleotide. In high concentrations of sucrose where NFA is stable, it polymerizes more favorably with a lag phase shorter than ATP-actin and a critical concentration close to zero. NFA filaments are stable, but depolymerize at low sucrose concentrations due to denaturation of subunits when they dissociate from filament ends. By electron microscopy of negatively stained specimens, NFA forms long filaments with a persistence length 1.5 times greater than ADP-actin filaments. Three-dimensional helical reconstructions of NFA and ADP-actin filaments at 2.5 nm resolution reveal similar intersubunit contacts along the two long-pitch helical strands but statistically significant less mass density between the two strands of NFA filaments. When compared with ADP-actin filaments, the major difference peak of NFA filaments is near, but does not coincide with, the vacated nucleotide binding site. The empty nucleotide binding site in these NFA filaments is not accessible to free nucleotide in the solution. The affinity of NFA filaments for rhodamine phalloidin is lower than that of native actin filaments, due to a lower association rate. This work confirms that bound nucleotide is not essential for actin polymerization, so the main functions of the nucleotide are to stabilize monomers, modulate the mechanical and dynamic properties of filaments through ATP hydrolysis and phosphate release, and to provide an internal timer for the age of the filament.  相似文献   

20.
M Str?mqvist 《FEBS letters》1987,213(1):102-106
The effect of brain spectrin (fodrin) on actin has been studied using viscometry and fluorimetry. Brain spectrin resembles erythrocyte spectrin tetramer in its action on actin. Both proteins crosslink actin filaments giving rise to a large increase in the viscosity but fluorimetry shows that neither affects actin polymerization significantly. In addition, brain spectrin as well as erythrocyte spectrin fragments preformed actin filaments. Actin filaments incubated in the presence of either of the two proteins incorporate actin monomers at a much higher rate showing that more filament ends are generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号