首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous preterm birth is the leading cause of infant death and of neurological disabilities in survivors. A significant proportion of spontaneous preterm births are associated with infection. Infection activates inflammation which induces a cascade of events that leads to myometrial contractions and rupture of fetal membranes. In non-gestational tissues, the citrus flavone nobiletin has been shown to exert potent anti-inflammatory properties. Thus, in this study, we sought to determine the effect of nobiletin on pro-inflammatory mediators in human fetal membranes and myometrium. Human fetal membranes and myometrium were treated with bacterial endotoxin lipopolysaccharide (LPS) in the absence or presence of nobiletin. In addition, the effect of nobiletin in fetal membranes taken from spontaneous preterm deliveries with and without infection (i.e. histological chorioamnionitis) was also examined. In human fetal membranes and myometrium, nobiletin significantly decreased LPS-stimulated expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8) and MMP-9 expression and pro-MMP-9 secretion. Additionally, nobiletin significantly decreased COX-2 expression and subsequent prostaglandin (PG) E2 production. Notably, nobiletin was also able to reduce the expression and production of pro-inflammatory cytokines and MMP-9 in fetal membranes taken from women after spontaneous preterm birth. In conclusion, our study demonstrates that nobiletin can reduce infection-induced pro-inflammatory mediators in human fetal membranes and myometrium. These in vitro studies further support the increasing volume and quality of evidence that high fruit and vegetable intake in pregnancy is associated with a decreased risk of adverse pregnancy outcomes.  相似文献   

2.
Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative shown to have anti-inflammatory, antitumor, and neuroprotective properties. This study has investigated that nobiletin exerted inhibitory effects on the cell adhesion, invasion, and migration abilities of a highly metastatic AGS cells under non-cytotoxic concentrations. Data also showed nobiletin could inhibit the activation of focal adhesion kinase (FAK) and phosphoinositide-3-kinase/Akt (PI3K/Akt) involved in the downregulation of the enzyme activities, protein expressions, messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-2 (MMP-9). Also, our data revealed that nobiletin inhibited FAK/PI3K/Akt with concurrent reduction in the protein expressions of Ras, c-Raf, Rac-1, Cdc42, and RhoA by western blotting, whereas the protein level of RhoB increased progressively. Otherwise, nobiletin-treated AGS cells showed tremendously decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, nobiletin significantly decreased the levels of phospho-Akt and MMP-2/9 in Akt1-cDNA-transfected cells concomitantly with a marked reduction in cell invasion and migration. These results suggest that nobiletin can reduce invasion and migration of AGS cells, and such a characteristic may be of great value in the development of a potential cancer therapy.  相似文献   

3.
MMP-9 (gelatinase B) is produced in a latent form (pro-MMP-9) that requires activation to achieve catalytic activity. Previously, we showed that MMP-2 (gelatinase A) is an activator of pro-MMP-9 in solution. However, in cultured cells pro-MMP-9 remains in a latent form even in the presence of MMP-2. Since pro-MMP-2 is activated on the cell surface by MT1-MMP in a process that requires TIMP-2, we investigated the role of the MT1-MMP/MMP-2 axis and TIMPs in mediating pro-MMP-9 activation. Full pro-MMP-9 activation was accomplished via a cascade of zymogen activation initiated by MT1-MMP and mediated by MMP-2 in a process that is tightly regulated by TIMPs. We show that TIMP-2 by regulating pro-MMP-2 activation can also act as a positive regulator of pro-MMP-9 activation. Also, activation of pro-MMP-9 by MMP-2 or MMP-3 was more efficient in the presence of purified plasma membrane fractions than activation in a soluble phase or in live cells, suggesting that concentration of pro-MMP-9 in the pericellular space may favor activation and catalytic competence.  相似文献   

4.
Song HY  Ju SM  Goh AR  Kwon DJ  Choi SY  Park J 《BMB reports》2011,44(7):462-467
Up-regulation of selected matrix metalloproteinases (MMPs) such as MMP-9 contributes to inflammatory processes during the development of various skin diseases, such as atopic dermatitis. In this study, we examined the effect of a cell-permeable superoxide dismutase (Tat-SOD) on TNF-α-induced MMP-9 expression in human keratinocyte cells (HaCaT). When Tat-SOD was added to the culture medium of HaCaT cells, it rapidly entered the cells in dose- and time-dependent manners. Tat-SOD decreased TNF-α-induced reactive oxygen species (ROS) generation. Tat-SOD also inhibited TNF-α-induced NF-κB DNA binding activity. Treatment of HaCaT cells with Tat-SOD significantly inhibited TNF-α-induced mRNA and protein expression of MMP-9, as measured by RT-PCR and Western blot analysis. In addition, Tat-SOD suppressed TNF-α-induced gelatinolytic activity of MMP-9. Taken together, our results indicate that Tat-SOD can suppress TNF-α-induced MMP-9 expression via ROS-NF-κB-dependent mechanisms in keratinocytes, and therefore can be used as an immunomodulatory agent against inflammatory skin diseases related to oxidative stress.  相似文献   

5.
Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.  相似文献   

6.
In vitro binding studies with latent matrix metalloproteinase-9 (pro-MMP-9) have revealed the existence of nondisulfide-bonded α2(IV) chains on the cell surface capable of forming a high-affinity complex with the enzyme. Here we investigated the biosynthesis and cellular distribution of α2(IV) and α1(IV) chains in breast epithelial (MCF10A and MDA-MB-231) and fibrosarcoma (HT1080) cells by pulse-chase analysis followed by immunoprecipitation with chain-specific monoclonal antibodies (mAb). These studies showed that whereas the α1(IV) chain remained in the intracellular compartment, nondisulfide-bonded α2(IV) chains were secreted into the media in a stable form. Consistently, only α2(IV) was detected on the cell surface by surface biotinylation or indirect immunofluorescence. In agreement with the pulse-chase analysis, media subjected to coprecipitation experiments with pro-MMP-9 or pro-MMP-9-affinity chromatography followed by immunoblotting with chain-specific mAbs resulted in the detection of α2(IV). A preferential secretion of nondisulfide-bonded α2(IV) chains was also observed in CHO-K1 cells transiently transfected with full-length mouse α2(IV) or α1(IV) cDNAs. However, a complex of mouse α1(IV) with pro-MMP-9 was coprecipitated with exogenous enzyme from lysates of CHO-K1 cells transfected with mouse α1(IV), suggesting that under overexpression conditions the enzyme can also interact with the α1(IV) chain. Collectively, these studies further demonstrate the interactions of pro-MMP-9 with collagen IV chains and a unique processing and targeting of nondisulfide-bonded α2(IV) chains that may play a role in the surface/matrix association of pro-MMP-9. J. Cell. Physiol. 180:131–139, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
We have recently demonstrated that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IkappaBalpha kinase (IKK) signaling pathways. However, the molecular mechanism(s) by which OPN regulates promatrix metalloproteinase-9 (pro-MMP-9) activation, MMP-9-dependent cell motility, and tumor growth and the involvement of upstream kinases in regulation of these processes in murine melanoma cells are not well defined. Here we report that OPN induced alpha(v)beta(3) integrin-mediated phosphorylation and activation of nuclear factor-inducing kinase (NIK) and enhanced the interaction between phosphorylated NIK and IKKalpha/beta in B16F10 cells. Moreover, NIK was involved in OPN-induced phosphorylations of MEK-1 and ERK1/2 in these cells. OPN induced NIK-dependent NFkappaB activation through ERK/IKKalpha/beta-mediated pathways. Furthermore OPN enhanced NIK-regulated urokinase-type plasminogen activator (uPA) secretion, uPA-dependent pro-MMP-9 activation, cell motility, and tumor growth. Wild type NIK, IKKalpha/beta, and ERK1/2 enhanced and kinase-negative NIK (mut NIK), dominant negative IKKalpha/beta (dn IKKalpha/beta), and dn ERK1/2 suppressed the OPN-induced NFkappaB activation, uPA secretion, pro-MMP-9 activation, cell motility, and chemoinvasion. Pretreatment of cells with anti-MMP-2 antibody along with anti-MMP-9 antibody drastically inhibited the OPN-induced cell migration and chemoinvasion, whereas cells pretreated with anti-MMP-2 antibody had no effect on OPN-induced pro-MMP-9 activation suggesting that OPN induces pro-MMP-2 and pro-MMP-9 activations through two distinct pathways. The level of active MMP-9 in the OPN-induced tumor was higher compared with control. To our knowledge, this is the first report that NIK plays a crucial role in OPN-induced NFkappaB activation, uPA secretion, and pro-MMP-9 activation through MAPK/IKKalpha/beta-mediated pathways, and all of these ultimately control the cell motility, invasiveness, and tumor growth.  相似文献   

8.
Galanin is a neuropeptide that is widely distributed in the central and peripheral nervous systems. Some small cell lung carcinoma (SCLC) cell lines such as SBC-3A release only the high-molecular-mass form, with lower molecular mass forms being undetectable. To investigate the mechanism of processing of progalanin to active peptide, we studied galanin-LI in both the culture media of SBC-3A cells and in extracts from in vivo mouse SBC-3A tumors. SBC-3A cells were found to release high molecular mass galanin, but did not release active peptides. In contrast, tumor extract contained both high-molecular-mass galanin, and a cleaved lower-molecular-mass form of the peptide (8, 5 and 2 kDa). The lower-molecular-mass peptide was identified as galanin(1-20) by MALDI-TOF mass spectrometry. We then looked at MMP-2 and MMP-9 release from SBC-3A cells and tumor tissue treated with galanin and progalanin, as revealed by gelatin zymography. Galanin elicited pro-MMP-2 and pro-MMP-9 release from SBC-3A cells and tumor tissue; however, recombinant progalanin induced pro-MMP-2 and pro-MMP-9 release from tumor tissue only. This study has shown that the galanin-LI released from SCLC SBC-3A cells consisted of the high-molecular-mass peptide form, and was processed extracellularly to galanin(1-20). Furthermore, galanin was seen to induce pro-MMP-2 and pro-MMP-9 release from SBC-3A cells.  相似文献   

9.
《Phytomedicine》2015,22(4):431-437
Tumor necrosis factor alpha (TNF-α) promotes the expression of adhesion molecules and induces endothelial dysfunction, a process that can lead to atherosclerosis. Green tea consumption can inhibit endothelial dysfunction and attenuate the development of arteriosclerosis. The purpose of this study was to examine whether epigallocatechin-3-gallate (EGCG) prevents TNF-α-dependent endothelial dysfunction. Here, we compared the regulatory effects of the green tea components EGCG and l-theanine against TNF-α-induced stimulation of adhesion molecule expression and apoptosis induction, which is associated with autophagy. Monocytic cell adhesion to human endothelial cells was measured using a fluorescently-labeled cell line, U-937. Caspase 3/7 activity was examined with a fluorescent probe and fluorescence microscopy. In addition, we analyzed the expression of several genes by RT-PCR. TNF-α-modulation of LC3 and VCAM1 protein levels were investigated by Western blot (WB). TNF-α induced adhesion of U937 cells to endothelial cells, and gene expression associated with adhesion molecules and apoptosis. On the other hand, EGCG and l-theanine inhibited TNF-α-induced adhesion of U937 cells to endothelial cells and inhibited increases in ICAM1, CCL2 and VCAM1 expression. Furthermore, EGCG and l-theanine inhibited TNF-α-induced apoptosis-related gene expression (e.g., CASP9), and caspase activity while inhibiting TNFα-induced VCAM1, LC3A and LC3B protein expression. Meanwhile, treatment of endothelial cells with autophagy inhibitor 3-methyladenine (3-MA) blocked EGCG-induced expression of CASP9. Together, these results indicate that EGCG can modulate TNF-α-induced monocytic cell adhesion, apoptosis and autophagy. We thus conclude that EGCG might be beneficial for inhibiting TNF-α-mediated human endothelial disorders by affecting LC3 expression-related processes.  相似文献   

10.
11.
TNF-α is a cytokine with antitumorigenic property. In contrast, low dose, chronic TNF-α production by tumor cells or stromal cells may promote tumor growth and metastasis. Serum levels of TNF-α are significantly elevated in renal cell carcinoma (RCC) patients. Here, we showed that TNF-α induced epithelial-mesenchymal transition (EMT) and promoted tumorigenicity of RCC by repressing E-cadherin, upregulating vimentin, activating MMP9, and invasion activities. In addition, TNF-α treatment inhibited glycogen synthase kinase 3β (GSK-3β) activity through serine-9 phosphorylation mediated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway in RCC cells. Inhibition of PI3K/AKT by LY294002 reactivated GSK-3β and suppressed the TNF-α-induced EMT of RCC cells. Inactivation of GSK-3β by LiCl significantly increased MMP9 activity and EMT of RCC cells. Activation of GSK-3β by transduction of constitutively active GSK-3β into RCC cells suppressed TNF-α-mediated anchorage-independent growth in soft agar and tumorigenicity in nude mice. Overexpression of a kinase-deficient GSK-3β, in contrast, potentiated EMT, anchorage-independent growth and drastically enhanced tumorigenicity in vivo. Most importantly, a 15-fold inactivation of GSK-3β activity, 3-fold decrease of E-cadherin, and 2-fold increase of vimentin were observed in human RCC tumor tissues. These results indicated that inactivation of GSK-3β plays a pivotal role in the TNF-α-mediated tumorigenesis of RCC. Mol Cancer Res; 10(8); 1109-19. ?2012 AACR.  相似文献   

12.
目的确定在胃癌细胞株中水飞蓟宾对TNF-α诱导的MMP-9表达的影响。方法应用细胞增殖分析、化学抑制剂处理、免疫印迹、流式细胞分析、腺病毒转移等技术完成实验。结果在SNU216和SNU668胃癌细胞中,MMP-9mRNA和蛋白的表达都被TNF-α剂量依赖性地提高。另-方面,TNF—α诱导的MMP-9表达被水飞蓟宾剂量依赖性地抑制。结论在胃癌细胞中水飞蓟宾可减少TNF-α诱导的MMP-9表达。  相似文献   

13.
Matrix metalloproteinase-9 (MMP-9) may play a critical catalytic role in tissue remodeling in vivo, but it is secreted by cells as a stable, inactive zymogen, pro-MMP-9, and requires activation for catalytic function. A number of proteolytic enzymes activate pro-MMP-9 in vitro, but the natural activator(s) of MMP-9 is unknown. To examine MMP-9 activation in a cellular setting we employed cultures of human tumor cells (MDA-MB-231 breast carcinoma cells) that were induced to produce MMP-9 over a 200-fold concentration range (0.03-8.1 nM). The levels of tissue inhibitors of metalloproteinase (TIMPs) in the induced cultures remain relatively constant at 1-4 nM. Quantitation of the zymogen/active enzyme status of MMP-9 in the MDA-MB-231 cultures indicates that even in the presence of potential activators, the molar ratio of endogenous MMP-9 to TIMP dictates whether pro-MMP-9 activation can progress. When the MMP-9/TIMP ratio exceeds 1.0, MMP-9 activation progresses, but through an interacting protease cascade involving plasmin and stromelysin 1 (MMP-3). Plasmin, generated by the endogenous urokinase-type plasminogen activator, is not an efficient activator of pro-MMP-9, neither the secreted pro-MMP-9 nor the very low levels of pro-MMP-9 associated with intact cells. Although plasmin can proteolytically process pro-MMP-9, this limited action does not yield an enzymatically active MMP-9, nor does it cause the MMP-9 to be more susceptible to activation. Plasmin, however, is very efficient at generating active MMP-3 (stromelysin-1) from exogenously added pro-MMP-3. The activated MMP-3 becomes a potent activator of the 92-kDa pro-MMP-9, yielding an 82-kDa species that is enzymatically active in solution and represents up to 50-75% conversion of the zymogen. The activated MMP-9 enhances the invasive phenotype of the cultured cells as their ability to both degrade extracellular matrix and transverse basement membrane is significantly increased following zymogen activation. That this enhanced tissue remodelling capability is due to the activation of MMP-9 is demonstrated through the use of a specific anti-MMP-9 blocking monoclonal antibody.  相似文献   

14.
Niu R  Okamoto T  Iwase K  Nomura S  Mizutani S 《Life sciences》2000,66(12):1127-1137
To elucidate the implication of type IV collagenases(MMP-2 and MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) for placental development, we quantified their levels in the conditioned media of placental organ culture and primary culture of the trophoblast as well as in the tissue extracts of placentas from different stages of gestation using specific enzyme-linked immunosorbent assays. First trimester villous tissue secreted about 10 times more pro-MMP-2 than pro-MMP-9, and pro-MMP-2 levels dramatically decreased in the second trimester. On the other hand, pro-MMP-9 levels were more than 10 times higher than those of pro-MMP-2 in the primary culture of the first trimester trophoblast, indicating the involvement of stromal cells for prominent pro-MMP-2 secretion from first trimester villous tissue described above. Levels of TIMPs, especially those of TIMP-2, remained constant throughout gestation both in the culture media and tissue extracts. Gelatin zymography revealed abundant secretion of the active form of MMP-2 as well as pro-MMP-2 from first trimester villous tissue. Western immunoblot analysis confirmed the presence of both TIMP-1 and TIMP-2 in placental tissue. These results suggest that active secretion of MMP-2 from villous tissue in the first trimester and constant production of TIMPs throughout gestation are characteristic of placental development.  相似文献   

15.
Osteopontin (OPN) is a secreted, non-collagenous, sialic-acid rich, glycosylated adhesive phospho- protein. Several highly metastatic transformed cells synthesized a higher level of OPN compared with non-tumorigenic cells. We have recently reported that OPN induces nuclear factor-κB (NF-κB)-mediated promatrix metalloproteinase-2 activation through IκBα/IKK signaling pathways. However, the molecular mechanism(s) by which OPN regulates pro-matrix metalloproteinase-9 (pro-MMP-9) activation and involvement of upstream kinases in regulation of these processes that ultimately control cell motility and tumor growth in murine melanoma cells are not well defined. Here we report that OPN induces αvβ3 integrin-mediated phosphorylation and activation of nuclear factor inducing kinase (NIK) and enhances the interaction between phosphorylated NIK and IκBα kinase α/β (IKKα/β) in B16F10 cells. Moreover, NIK is involved in OPN-induced phosphorylations of MEK-1 and ERK1/2 in these cells. OPN induces NIK-dependent NF-κB activation through ERK/IKKα/β-mediated pathways. Furthermore, OPN enhances NIK-regulated urokinase-type plasminogen activator (uPA) secretion, uPA-dependent pro-MMP-9 activation, and cell motility. Pretreatment of cells with anti-MMP-2 antibody along with anti-MMP-9 antibody drastically inhibited the OPN-induced cell migration and chemoinvasion, whereas cells pretreated with anti-MMP-2 antibody had no effect on OPN-induced pro-MMP-9 activation suggesting that OPN induces pro-MMP-2 and pro-MMP-9 activations through two distinct pathways. Taken together, NIK acts as crucial regulator in OPN-induced MAPK/IKK-mediated NF-κB-dependent uPA secretion and MMP-9 activation thereby controlling melanoma cell motility and chemoinvasion. An erratum to this article is available at .  相似文献   

16.
Tumor necrosis factor α (TNF-α), a pivotal cytokine in sepsis, protects the host against pathogens by promoting an inflammatory response while simultaneously inducing apoptosis of the vascular endothelium. Unfortunately, inhibitors targeting certain components of the TNF-α signaling pathway to reduce cellular apoptosis have failed to translate into clinical applications, partly due to the adverse effects of excessive immunosuppression. In an attempt to discover potential targets in the TNF-α signaling pathway to modulate moderate inflammation and apoptosis during the development of sepsis, we performed a pooled genome-wide CRISPR/Cas9 knockout screen in human umbilical vein endothelial cells (HUVECs). Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), B-cell lymphoma 2 (BCL2), Bcl2-associated death promoter (BAD), and NLR family member X1 (NLRX1) deficiencies were identified as the effective genetic suppressors of TNF-α cytotoxicity on a list of candidate regulators. CRISPR-mediated NLRX1 knockout conferred cellular resistance to challenge with TNF-α, and NLRX1 could be induced to colocalize with mitochondria following TNF-α stimulation. Thus, our work demonstrates the advantage of genome-scale screening with Cas9 and validates NLRX1 as a potential modulator of TNF-α-induced vascular endothelial apoptosis during sepsis.  相似文献   

17.
Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin alpha2, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.  相似文献   

18.
IL-1beta increased the production of proenzyme of MMP-9 (pro-MMP-9) in a time- and dose-dependent manner in murine macrophage RAW 264.7 cells. However, the production of MMP-2 was not significantly changed by IL-1beta treatment. The intracellular H(2)O(2) content, as determined with H(2)O(2)-sensitive probe 2('),7(')-dichlorodihydrofluorescein, also increased after IL-1beta treatment (5ng/ml). In addition, exogenous H(2)O(2) (50 microM) was found to increase the production of pro-MMP-9. Transient transfection study using a MMP-9 promoter-reporter construct showed that IL-1beta enhanced the MMP-9 promoter activity. Electrophoretic mobility shift assay and site-directed mutagenesis study on the consensus binding site for NF-kappaB revealed that the activation of NF-kappaB is required for the IL-1beta-induced activation of MMP-9 promoter. N-acetylcysteine, an antioxidant, could abrogate the production of pro-MMP-9, H(2)O(2) generation, and activation of NF-kappaB and MMP-9 promoter. These results suggest that IL-1beta upregulates the MMP-9 expression via production of reactive oxygen species and activation of NF-kappaB in RAW 264.7 cells.  相似文献   

19.
Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation.  相似文献   

20.
Pterostilbene (PT), an analog of resveratrol, exerts a potent anti-inflammatory effect. However, the protective effects of PT against inflammation in endothelial cells have not been elucidated. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of endothelial cell inflammation. In this study, we explored the effect of PT on the tumor necrosis factor-α (TNF-α)-induced inflammatory response in human umbilical vein endothelial cells (HUVECs) and elaborated the role of ERS in this process. TNF-α treatment significantly upregulated the levels of inflammation-related molecules in cell culture media, increased the adhesion of monocytes to HUVECs, and enhanced the expression of the MMP9 and ICAM proteins in HUVECs. Additionally, TNF-α potently increased ERS-related protein levels, such as GRP78 and p-eIF2α. However, PT treatment reversed the increased production of inflammatory cytokines and the adhesion of monocytes to HUVECs, as well as reduced the TNF-α-induced effects exerted by ERS-related molecules. Furthermore, thapsigargin (THA), an ERS inducer, attenuated the protective effect of PT against TNF-α-induced inflammation and ERS in HUVECs. Additionally, the downregulation of ERS signaling using siRNA targeting eIF2α and IRE1 not only inhibited ERS-related molecules but also simulated the therapeutic effects of PT on TNF-α-induced inflammation. In summary, PT treatment potently attenuates inflammation in vascular endothelial cells, which at least partly depends on the reduction of ERS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号