首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular phylogenies of island organisms provide useful systems for testing hypotheses of convergent or parallel evolution, since selectively neutral molecular characters are likely to be independent of phenotype, and the existence of similar environments on multiple isolated islands provides numerous opportunities for populations to evolve independently under the same constraints. Here we construct a phylogenetic hypothesis for Hypsipetes bulbuls of the western Indian Ocean, and use this to test hypotheses of colonization pattern and phenotypic change among islands of the region. Mitochondrial sequence data were collected from all extant taxa of the region, combined with sequence data from relevant lineages in Asia. Data are consistent with a single Hypsipetes colonization of the western Indian Ocean from Asia within the last 2.6 Myr. The expansion of Hypsipetes appears to have occurred rapidly, with descendants found across the breadth of its western Indian Ocean range. The data suggest that a more recent expansion of Hypsipetes madagascariensis from Madagascar led to the colonization of Aldabra and a secondary colonization of the Comoros. Groupings of western Indian Ocean Hypsipetes according to phenotypic similarities do not correspond to mtDNA lineages, suggesting that these similarities have evolved by convergence or parallelism. The direction of phenotypic change cannot be inferred with confidence, since the primary expansion occurred rapidly relative to the rate of mtDNA substitution, and the colonization sequence remains uncertain. However, evidence from biogeography and comparison of independent colonization events are consistent with the persistence of a small grey continental bulbul in India and Madagascar, and multiple independent origins of large size and green plumage in insular island populations of the Comoros, Mascarenes and Seychelles. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 271–287.  相似文献   

2.
Today, the only surviving wild population of giant tortoises in the Indian Ocean occurs on the island of Aldabra. However, giant tortoises once inhabited islands throughout the western Indian Ocean. Madagascar, Africa, and India have all been suggested as possible sources of colonization for these islands. To address the origin of Indian Ocean tortoises (Dipsochelys, formerly Geochelone gigantea), we sequenced the 12S, 16S, and cyt b genes of the mitochondrial DNA. Our phylogenetic analysis shows Dipsochelys to be embedded within the Malagasy lineage, providing evidence that Indian Ocean giant tortoises are derived from a common Malagasy ancestor. This result points to Madagascar as the source of colonization for western Indian Ocean islands by giant tortoises. Tortoises are known to survive long oceanic voyages by floating with ocean currents, and thus, currents flowing northward towards the Aldabra archipelago from the east coast of Madagascar would have provided means for the colonization of western Indian Ocean islands. Additionally, we found an accelerated rate of sequence evolution in the two Malagasy Pyxis species examined. This finding supports previous theories that shorter generation time and smaller body size are related to an increase in mitochondrial DNA substitution rate in vertebrates.  相似文献   

3.
The origin of the terrestrial biota of Madagascar and, especially, the smaller island chains of the western Indian Ocean is relatively poorly understood. Madagascar represents a mixture of Gondwanan vicariant lineages and more recent colonizers arriving via Cenozoic dispersal, mostly from Africa. Dispersal must explain the biota of the smaller islands such as the Comoros and the chain of Mascarene islands, but relatively few studies have pinpointed the source of colonizers, which may include mainland Africa, Asia, Australasia, and Madagascar. The pantropical hermit spiders (genus Nephilengys) seem to have colonized the Indian Ocean island arc stretching from Comoros through Madagascar and onto Mascarenes, and thus offer one opportunity to reveal biogeographical patterns in the Indian Ocean. We test alternative hypotheses on the colonization route of Nephilengys spiders in the Indian Ocean and simultaneously test the current taxonomical hypothesis using genetic and morphological data. We used mitochondrial (COI) and nuclear (ITS2) markers to examine Nephilengys phylogenetic structure with samples from Africa, southeast Asia, and the Indian Ocean islands of Madagascar, Mayotte, Réunion and Mauritius. We used Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, and calculated genetic distances and fixation indices. Our results suggest an African origin of Madagascar Nephilengys via Cenozoic dispersal, and subsequent colonization of the Mascarene islands from Madagascar. We find strong evidence of gene flow across Madagascar and through the neighboring islands north of it, while phylogenetic trees, haplotype networks, and fixation indices all reveal genetically isolated and divergent lineages on Mauritius and Réunion, consistent with female color morphs. These results, and the discovery of the first males from Réunion and Mauritius, in turn falsify the existing taxonomic hypothesis of a single widespread species, Nephilengys borbonica, throughout the archipelago. Instead, we diagnose three Nephilengys species: Nephilengys livida (Vinson, 1863) from Madagascar and Comoros, N. borbonica (Vinson, 1863) from Réunion, and Nephilengys dodo new species from Mauritius. Nephilengys followed a colonization route to Madagascar from Africa, and on through to the Mascarenes, where it speciated on isolated islands. The related golden orb-weaving spiders, genus Nephila, have followed the same colonization route, but Nephila shows shallower divergencies, implying recent colonization, or a moderate level of gene flow across the archipelago preventing speciation. Unlike their synanthropic congeners, N. borbonica and N. dodo are confined to pristine island forests and their discovery calls for evaluation of their conservation status.  相似文献   

4.
Aim Cryptoblepharus is a genus of small arboreal or rock‐dwelling scincid lizards, widespread through the Indo‐Pacific and Australian regions, with a disjunct outlier in the Malagasy region. The taxonomy within this genus is controversial, with different authors ranking the different forms (now some 36) at various levels, from different species to subspecies of a single species, Cryptoblepharus boutonii. We investigated the biogeography and genetic differentiation of the Cryptoblepharus from the Western Indian Ocean region, in order to understand their origin and history. Location Western Indian Ocean region. Methods We analysed sequences of mitochondrial DNA (partial 12s and 16s rRNA genes, 766 bp) from 48 specimens collected in Madagascar, Mauritius, the four Comoros islands and East Africa, and also in New Caledonia, representing the Australo‐Pacific unit of the distribution. Results Pairwise sequence divergences of c. 3.1% were found between the New Caledonian forms and the ones from the Western Indian Ocean. Two clades were identified in Madagascar, probably corresponding to the recognized forms cognatus and voeltzkowi, and two clades were identified in the Comoro islands, where each island population formed a distinct haplotype clade. The East African samples form a monophyletic unit, with some variation existing between Pemba, Zanzibar and continental Tanzania populations. Individuals from Mauritius form a divergent group, more related to populations from Moheli and Grand Comore (Comoros islands) than to the others. Main conclusions The level of divergence between the populations from the Western Indian Ocean and Australian regions and the geographic coherence of the variation within the Western Indian Ocean group are concordant with the hypothesis of a colonization of this region by a natural transoceanic dispersal (from Australia or Indonesia). The group then may have diversified in Madagascar, from where it separately colonized the East African coast, the Comoros islands (twice), and Mauritius. The genetic divergence found is congruent with the known morphological variation, but its degree is much lower than typically seen between distinct species of reptiles.  相似文献   

5.
We examine the effects of ecological opportunity and geographic area on rates of species accumulation and morphological evolution following archipelago colonization in day geckos (genus Phelsuma) in the Indian Ocean. Using a newly generated molecular phylogeny for the genus, we present evidence that these geckos likely originated on Madagascar, whereas colonization of three archipelagos in the Indian Ocean, the Seychelles, Mascarene, and Comoros Islands has produced three independent monophyletic radiations. We find that rates of species accumulation are not elevated following colonization but are roughly equivalent on all three isolated archipelagos and on the larger island of Madagascar. However, rates of species accumulation have slowed through time on Madagascar. Rates of morphological evolution are higher in both the Mascarene and Seychelles archipelagos compared to rates on Madagascar. This negative relationship between rate of morphological evolution and island area suggests that ecological opportunity is an important factor in diversification of day gecko species.  相似文献   

6.
A corollary of island biogeographical theory is that islands are largely colonized from their nearest mainland source. Despite Madagascar’s extreme isolation from India and proximity to Africa, a high proportion of the biota of the Madagascar region has Asian affinities. This pattern has rarely been viewed as surprising, as it is consistent with Gondwanan vicariance. Molecular phylogenetic data provide strong support for such Asian affinities, but often not for their vicariant origin; most divergences between lineages in Asia and the Madagascar region post‐date the separation of India and Madagascar considerably (up to 87 Myr), implying a high frequency of dispersal that mirrors colonization of the Hawaiian archipelago in distance. Indian Ocean bathymetry and the magnitude of recent sea‐level lowstands support the repeated existence of sizeable islands across the western Indian Ocean, greatly reducing the isolation of Madagascar from Asia. We put forward predictions to test the role of this historical factor in the assembly of the regional biota. © The Willi Hennig Society 2009.  相似文献   

7.
Aim To describe the phylogeographic patterns of the black rat, Rattus rattus, from islands in the western Indian Ocean where the species has been introduced (Madagascar and the neighbouring islands of Réunion, Mayotte and Grande Comore), in comparison with the postulated source area (India). Location Western Indian Ocean: India, Arabian Peninsula, East Africa and the islands of Madagascar, Réunion, Grande Comore and Mayotte. Methods Mitochondrial DNA (cytochrome b, tRNA and D‐loop, 1762 bp) was sequenced for 71 individuals from 11 countries in the western Indian Ocean. A partial D‐loop (419 bp) was also sequenced for eight populations from Madagascar (97 individuals), which were analysed in addition to six previously published populations from southern Madagascar. Results Haplotypes from India and the Arabian Peninsula occupied a basal position in the phylogenetic tree, whereas those from islands were distributed in different monophyletic clusters: Madagascar grouped with Mayotte, while Réunion and Grand Comore were present in two other separate groups. The only exception was one individual from Madagascar (out of 190) carrying a haplotype that clustered with those from Réunion and South Africa. ‘Isolation with migration’ simulations favoured a model with no recurrent migration between Oman and Madagascar. Mismatch distribution analyses dated the expansion of Malagasy populations on a time‐scale compatible with human colonization history. Higher haplotype diversity and older expansion times were found on the east coast of Madagascar compared with the central highlands. Main conclusions Phylogeographic patterns supported the hypothesis of human‐mediated colonization of R. rattus from source populations in either the native area (India) or anciently colonized regions (the Arabian Peninsula) to islands of the western Indian Ocean. Despite their proximity, each island has a distinct colonization history. Independent colonization events may have occurred simultaneously in Madagascar and Grande Comore, whereas Mayotte would have been colonized from Madagascar. Réunion was colonized independently, presumably from Europe. Malagasy populations may have originated from a single successful colonization event, followed by rapid expansion, first in coastal zones and then in the central highlands. The congruence of the observed phylogeographic pattern with human colonization events and pathways supports the potential relevance of the black rat in tracing human history.  相似文献   

8.
Madagascar is surrounded by archipelagos varying widely in origin, age and structure. Although small and geologically young, these archipelagos have accumulated disproportionate numbers of unique lineages in comparison to Madagascar, highlighting the role of waif-dispersal and rapid in situ diversification processes in generating endemic biodiversity. We reconstruct the evolutionary and biogeographical history of the genus Psiadia (Asteraceae), a plant genus with near equal numbers of species in Madagascar and surrounding islands. Analyzing patterns and processes of diversification, we explain species accumulation on peripheral islands and aim to offer new insights on the origin and potential causes for diversification in the Madagascar and Indian Ocean Islands biodiversity hotspot. Our results provide support for an African origin of the group, with strong support for non-monophyly. Colonization of the Mascarenes took place by two evolutionary distinct lineages from Madagascar, via two independent dispersal events, each unique for their spatial and temporal properties. Significant shifts in diversification rate followed regional expansion, resulting in co-occurring and phenotypically convergent species on high-elevation volcanic slopes. Like other endemic island lineages, Psiadia have been highly successful in dispersing to and radiating on isolated oceanic islands, typified by high habitat diversity and dynamic ecosystems fuelled by continued geological activity. Results stress the important biogeographical role for Rodrigues in serving as an outlying stepping stone from which regional colonization took place. We discuss how isolated volcanic islands contribute to regional diversity by generating substantial numbers of endemic species on short temporal scales. Factors pertaining to the mode and tempo of archipelago formation and its geographical isolation strongly govern evolutionary pathways available for species diversification, and the potential for successful diversification of dispersed lineages, therefore, appears highly dependent on the timing of arrival, as habitat and resource properties change dramatically over the course of oceanic island evolution.  相似文献   

9.
10.
In this paper we examine the evolutionary relationships of kestrels from mainland Africa, Indian Ocean islands and related areas. We construct a molecular phylogeny of African kestrels, using approximately 1.0 kb of mitochondrial cytochrome b sequence. Our molecular results support an Old World origin for typical kestrels and an ancient divergence of kestrels into the New World, and indicate a more recent radiation of kestrels from Africa via Madagascar towards Mauritius and the Seychelles. Phylogenetic placement of the Australian kestrel suggests a recent origin from African kestrel stock. We compare evolutionary relationships based on kestrel plumage pattern and morphology to our molecular results for the African and Indian Ocean kestrels, and reveal some consistency with the different island forms. We apply a range of published avian cytochrome b substitution rates to our data, as an alternative to internal calibration of a molecular clock arising from incomplete paleontological information. We align these divergence estimates to the geological history of Indian Ocean island formation inferred from potassium-argon dating methods. The arrival of kestrels on Mauritius appears consistent with the cessation of volcanic activity on Mauritius. The estimated time and route of divergence of the Seychelles kestrel from Madagascar may be compatible with the emergence of smaller islands during Pleistocene sea level fluctuations.  相似文献   

11.
Thirteen drosophilid species belonging to seven genera and two subfamilies are reported from three coral islands (namely Europa, Juan de Nova and Glorioso) that belong to the Scattered Islands in the Indian Ocean. Five species are cosmopolitan and five are African. Three are endemic to the insular Western Indian Ocean, including a presumably new Scaptodrosophila species. On the island of Juan de Nova, most captured flies had pollinia attached to the bases of their proboscis. DNA analysis using the rbcl gene revealed that these pollinia belong to the genus Leptadenia (Apocynaceae), of which a single species L. madagascariensis, endemic in Madagascar and Comoros, is present in this island. This is the first reported association between this plant and drosophilids.  相似文献   

12.
Leptospirosis is a bacterial zoonosis of major concern on tropical islands. Human populations on western Indian Ocean islands are strongly affected by the disease although each archipelago shows contrasting epidemiology. For instance, Mayotte, part of the Comoros Archipelago, differs from the other neighbouring islands by a high diversity of Leptospira species infecting humans that includes Leptospira mayottensis, a species thought to be unique to this island. Using bacterial culture, molecular detection and typing, the present study explored the wild and domestic local mammalian fauna for renal carriage of leptospires and addressed the genetic relationships of the infecting strains with local isolates obtained from acute human cases and with Leptospira strains hosted by mammal species endemic to nearby Madagascar. Tenrec (Tenrec ecaudatus, Family Tenrecidae), a terrestrial mammal introduced from Madagascar, is identified as a reservoir of L. mayottensis. All isolated L. mayottensis sequence types form a monophyletic clade that includes Leptospira strains infecting humans and tenrecs on Mayotte, as well as two other Malagasy endemic tenrecid species of the genus Microgale. The lower diversity of L. mayottensis in tenrecs from Mayotte, compared to that occurring in Madagascar, suggests that L. mayottensis has indeed a Malagasy origin. This study also showed that introduced rats (Rattus rattus) and dogs are probably the main reservoirs of Leptospira borgpetersenii and Leptospira kirschneri, both bacteria being prevalent in local clinical cases. Data emphasize the epidemiological link between the two neighbouring islands and the role of introduced small mammals in shaping the local epidemiology of leptospirosis.  相似文献   

13.
Mayotte is a French island located in the Comoros archipelago in the Indian Ocean. Due to the high level of resistance to chloroquine and sulfadoxine-pyrimethamine in this area, new therapeutic strategies are required. The aim was to assess and to document the efficacy of artemether-lumefantrine (AL) combination in four oral dosages. The follow-up was carried out during 21 days to monitor the antimalarial drug efficacy in an open trial in April-May, 2002. Results were obtained from 51 patients, aged from three to 46 years (12% less than five years). No case of therapeutic failure was observed. At day 2 after treatment, all the patients were apyretic and none of them had parasitaemia until day 21. This first therapeutic trial of the AL combination in the Indian Ocean sub-region shows that this association is safe, effective and rapid. AL should be an alternative treatment of uncomplicated malaria attacks in Comoros Archipelago, and will be of help to manage imported chloroquine-resistant falciparum malaria strains in Madagascar.  相似文献   

14.
Inventory of the mosquitoes (Diptera: Culicidae) of the islands of southwestern Indian Ocean, Madagascar excluded – A Critical Review. The biodiversity of mosquitoes in the islands of southwestern Indian Ocean is the concern of numerous publications. Here, we propose a synthetic inventory and the analysis of the mosquito diversity, based on the available literature. A comprehensive annotated checklist of mosquito species has been recently published on Madagascar; this is the reason why this land is excluded from our work. Studied area encompasses 28 tropical islands in the southern hemisphere: 4 islands in the Comoros archipelago, 5 Scattered Islands (îles Éparses), 5 in Mascarene, 11 in the Seychelles and 3 in the Chagos archipelago. In total, the mosquito list presents 73 valid species, of which 10 are Anophelinae and 63 Culicinae. The number of species that are distributed in these islands only is 19, i.e. 26%, which is a remarkable level for endemism. The richness in mosquito species in these islands is analysed through several aspects including geography, local speciation and natural or human dissemination. This updated inventory increases by 33% the number of known species by regard to the previous inventory published by Julvez & Mouchet in 1994. The historical responsibility of humans in the introduction of new mosquito species in these islands is strongly documented. For instance, the species with the highest distribution among islands are Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. The islands belong to the afrotropical biogeographic area and, logically, the majority (63%) of mosquito species present phylogenetic affinities with continental Africa and/or Madagascar; interestingly, the number of species present in these islands and in Madagascar but absent in continental Africa is higher than the number of species present in these islands and in continental Africa but absent in Madagascar (respectively 12 and 2 species). Thanks to valuable increase in the sampling effort, our knowledge of the culicidian fauna is increasing in these islands that constitute indisputably hotspots of biodiversity.  相似文献   

15.
It is widely accepted that insular terrestrial biodiversity progresses with island age because colonization and diversification proceed over time. Here, we assessed whether this principle extends to oceanic island streams. We examined rangewide mtDNA sequence variation in four stream‐dwelling species across the Hawaiian archipelago to characterize the relationship between colonization and demographic expansion, and to determine whether either factor reflects island age. We found that colonization and demographic expansion are not related and that neither corresponds to island age. The snail Neritina granosa exhibited the oldest colonization time (~2.713 mya) and time since demographic expansion (~282 kya), likely reflecting a preference for lotic habitats most prevalent on young islands. Conversely, gobioid fishes (Awaous stamineus, Eleotris sandwicensis and Sicyopterus stimpsoni) colonized the archipelago only ~0.411–0.935 mya, suggesting ecological opportunities for colonization in this group were temporally constrained. These findings indicate that stream communities form across colonization windows, underscoring the importance of ecological opportunities in shaping island freshwater diversity.  相似文献   

16.
Summary. The Indian Ocean Islands are a most interesting region for evolutionary studies of terrestrial organisms and, among insects, the Drosophilidae family occupies a privileged position. The Comoros archipelago was, up to now, the least explored place among all the islands. We present here the results of a collection on one of the four main islands, Mayotte. From 4500 collected flies, 25 species were distinguished. The biology, ecology and biogeography of each species are discussed. Considering the extant known species from all islands, five evolutionary scenarios are proposed, ranging from the invasive, cosmopolitan, man-transported species to endemic species restricted to a single island. Some species raise a puzzling problem: despite having a very narrow and specialised ecological niche, they are broadly distributed on most islands and also on the African mainland.  相似文献   

17.
Eocene ocean currents and prevailing winds correlate with over-water dispersals of terrestrial mammals from Africa to Madagascar. Since the Early Miocene (about 23 Ma), these currents flowed in the reverse direction, from the Indian Ocean towards Africa. The Comoro Islands are equidistant between Africa and Madagascar and support an endemic land vertebrate fauna that shares recent ancestry predominantly with Madagascar. We examined whether gene flow in two Miniopterus bat species endemic to the Comoros and Madagascar correlates with the direction of current winds, using uni- and bi-parentally inherited markers with different evolutionary rates. Coalescence-based analyses of mitochondrial matrilines support a Pleistocene (approximately 180,000 years ago) colonization event from Madagascar west to the Comoros (distance: 300 km) in the predicted direction. However, nuclear microsatellites show that more recent gene flow is restricted to a few individuals flying against the wind, from Grande Comore to Anjouan (distance: 80 km).  相似文献   

18.
Sicyopterus lagocephalus is a Gobiidae Sicydiinae (Teleostei) thought to inhabit Indo-Pacific island rivers from Comoros Islands in the Indian Ocean to Australs Islands (French Polynesia) in the Pacific Ocean. Its biological cycle comprises a marine planctonic larval phase of several months allowing it to migrate from island to island, but the other species of the genus, with such a larval stage, have generally a more restricted range and are often endemic. To understand the organisation of a species with such a wide distribution, mtDNA cytochrome b sequences were amplified for 55 specimens of this genus covering most of its distribution range together with six close endemic species and other gobiids used as outgroups. The main result is the confirmation of the ubiquity of S. lagocephalus that occurs over a range of 18,000 km in the Indian and Pacific Oceans. Two clades were identified within this species, one clustering most of French Polynesian haplotypes and the other clustering most of Mascarene (including Comoros) haplotypes. The overall pattern of distribution and phylogenetic relationship suggests that the lineages leading to endemic species originated earlier than S. lagocephalus. This latter seems to be a secondary migrant species, having colonised both Indian and Pacific Oceans with a few exceptions, situated at the border of the range (Madagascar, Marquesas, Rapa). According to the results, the phylogeny of the Sicyopterus group, the age of the different lineages and the past history of the colonisation of the Indo-Pacific islands are discussed.  相似文献   

19.
Tollenaere et al. (Journal of Biogeography, 2010, 37 , 398–410) present a phylogeographic analysis of Rattus rattus for the Western Indian Ocean, with particular emphasis on Madagascar, but do not include samples from three island groups centrally located in the Mozambique Channel. Haplotypes from these islands provide additional information on the colonization pathways of R. rattus in the Western Indian Ocean region. For each of the three Îles Éparses groups in the Mozambique Channel, we test the competing hypotheses that colonization by R. rattus was most likely: (1) from the Arabian Peninsula, (2) from East Africa, (3) from Madagascar, or (4) from independent shipping. These results are combined with historical observations of the presence of R. rattus on these islands to give stronger inference on the colonization pathways. Additionally, more accurate colonization dates provide guidance for contemporary conservation management.  相似文献   

20.
Hawlitschek, O. & Glaw, F. (2012). The complex colonization history of nocturnal geckos (Paroedura) in the Comoros Archipelago. —Zoologica Scripta, 00, 000–000. Oceanic islands have attracted special attention from evolutionary biologists because their mostly species‐poor, but highly endemic biota are exposed to selection regimes different to those of their mainland relatives. While many groups of oceanic islands worldwide have been used as natural laboratories of evolutionary biology, few such studies have been performed on the Comoros Archipelago in the Western Indian Ocean. We study Paroedura sanctijohannis Günther 1879, a nocturnal gecko endemic to this archipelago as only species of an otherwise Malagasy endemic genus. According to our phylogeny, P. sanctijohannis is not monophyletic, the population of the geologically oldest island Mayotte is clustering with related Malagasy species. We describe this population as Paroedura stellata sp.n. and provide morphological evidence distinguishing it from other Paroedura species. A molecular clock analysis shows that genetic divergence within P. sanctijohannis of the youngest island Grand Comoro is higher than expected based on its geological age. Additionally, this population is paraphyletic with respect to the population of the older island Anjouan, suggesting that the latter island was colonized long after its initial emergence, possibly after extinction of an original Paroedura population. Furthermore, we find that P. stellata sp.n. and P. sanctijohannis are more similar to each other than to other Paroedura species regarding adult coloration and juvenile coloration. Because these two species are not each other’s closest relatives, we discuss possible explanations for this pattern and suggest that it represents convergent adaptation to a relaxed insular selection regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号