首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Applied Phycology - The aim of this study was to define the simplest and least expensive protocol for total protein extraction for three different macroalgae of the genus Caulerpa (the...  相似文献   

2.
3.
Five methodologies for extracting DNA from food samples are described. The food products analyzed are from either soybean or maize. They were selected on the basis of the mechanical, thermal, and chemical treatments that they had been subjected to during industrial processing. DNA preparations were evaluated for purity, yield, and average fragment size. Two endogenous genes, soybean lectin gene and alcohol dehydrogenase gene (adh1), were used to assess the degree of DNA degradation at different stages of the transformation chain. The goal of this study was to determine the role that extraction methods play in DNA amplification in order to select the best protocol for a food sample. This comparative evaluation can be specifically useful for detection of genetically modified ingredients in a variety of food matrices.  相似文献   

4.
Kidney and spleen homogenates from each of 60 coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri) were examined for detection of Renibacterium salmoninarum. The proportions of positives differed widely with the detection procedures used: in coho salmon, 5% were positive by the Gram-stain procedure, 10% by the direct fluorescent antibody test, 48% by bacteriological isolation, 65% by staphylococcal coagglutination, and 73% by counterimmunoelectrophoresis; in steelhead trout, 3% were positive by Gram-stain, 8.3% by fluorescent antibody, 17% by bacteriological isolation, and 67% by counterimmunoelectrophoresis. Renibacterium salmoninarum was not detected in either coho salmon or steelhead trout by immunodiffusion analysis.  相似文献   

5.
The actions of cyclomaltodextrin glucanotransferases (CGTase; EC 2.4.1.19) from alkalophilic Bacillus sp. strain A2-5a (A2-5a CGTase), Bacillus macerans (Bmac CGTase), and Bacillus stearothermophilus (Bste CGTase) on amylose were investigated. All three enzymes produced large cyclic alpha-1,4-glucans (cycloamyloses) at the early stage of the reaction, but these were subsequently converted into smaller cycloamyloses. However, the rates of this conversion differed among the three enzymes. The product specificity of each CGTase in the cyclization reaction was determined by measuring the amount of each cycloamylose from CD6 to CD31 (CDn, a cycloamylose with a degree of polymerization of n). A2-5a CGTase produced 10 times more CD7, while Bmac CGTase produced 34 times more CD6 than other cycloamyloses. Bste CGTase produced 12 and 3 times more CD6 and CD7 than other cycloamyloses, respectively. The substrate specificities of the linearization reactions of CD6, CD7, CD8, and larger cycloamyloses (a mixture of CD22 to CD50) were investigated, and we found that CD7 and CD8 are extremely poor substrates for both hydrolytic and transglycosidic linearization (coupling) reactions while larger cycloamyloses are linearized at a much higher rate. By repeating these cyclization and linearization reactions, the larger cycloamyloses initially produced are converted into smaller cycloamyloses and finally into mainly CD6, CD7, and CD8. These three enzymes also differ in their hydrolytic activities, which seem to accelerate the conversion of larger cycloamyloses into smaller cycloamyloses.  相似文献   

6.
7.
While the use of anaerobic digestion to generate methane as a source of bioenergy is increasing worldwide, our knowledge of the microbial communities that perform biomethanation is very limited. Using next-generation sequencing, bacterial population profiles were determined in three full-scale mesophilic anaerobic digesters operated on dairy farms in the state of Vermont (USA). To our knowledge, this is the first report of a metagenomic analysis on the bacterial population of anaerobic digesters using dairy manure as their main substrate. A total of 20,366 non-chimeric sequence reads, covering the V1-V2 hypervariable regions of the bacterial 16S rRNA gene, were assigned to 2,176 operational taxonomic units (OTUs) at a genetic distance cutoff value of 5 %. Based on their limited sequence identity to validly characterized species, the majority of OTUs identified in our study likely represented novel bacterial species. Using a naïve Bayesian classifier, 1,624 anaerobic digester OTUs could be assigned to 16 bacterial phyla, while 552 OTUs could not be classified and may belong to novel bacterial taxonomic groups that have yet to be described. Firmicutes, Bacteroidetes, and Chloroflexi were the most highly represented bacteria overall, with Bacteroidetes and Chloroflexi showing the least and the most variation in abundance between digesters, respectively. All digesters shared 132 OTUs, which as a “core” group represented 65.4 to 70.6 % of sequences in individual digesters. Our results show that bacterial populations from microbial communities of anaerobic manure digesters can display high levels of diversity despite sharing a common core substrate.  相似文献   

8.
9.
10.
11.
The catalysts for many microbially mediated environmental processes such as the dechlorination of polychlorinated biphenyls (PCBs) have been difficult to identify by traditional isolation techniques. Numerous, as yet unsuccessful, attempts have been made to isolate and culture the dechlorinating species. To overcome this limitation, amplified rDNA restriction analysis (ARDRA) of a clone library, denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (TRFLP) were used concurrently to compare their effectiveness for characterizing an enriched microbial community. These methods were applied to enrichment cultures that selectively dechlorinated double-flanked chlorines in the PCB congener 2,3,4,5 chlorinated biphenyl. The methods have different biases, which were apparent from discrepancies in the relative clone frequencies (ARDRA), band intensities (DGGE) or peak heights (TRFLP) from the same enrichment culture. However, each method was effectively qualitative and identified the same organisms: a low G + C Gram-positive eubacterium, an organism most similar to the green non-sulphur bacteria, an Aminobacterium sp. and a Desulfovibrio sp. Overall, in community fingerprinting and preliminary identification, DGGE proved to be the most rapid and effective tool for the monitoring of microorganisms within a highly enriched culture. TRFLP results corroborated DGGE fingerprint analysis; however, identification required the additional step of creating a clone library. ARDRA provided an in-depth analysis of the community and this technique detected slight intraspecies sequence variation in 16S rDNA. These molecular methods are common in environmental microbiology, but rarely are they compared with the same sample site or culture. In general, all three methods detected similar community profiles, but inherent biases resulted in different detection limits for individual OTUs (operational taxonomic units).  相似文献   

12.
A system for biohydrogen production was developed based on long-term continuous cultures grown on sugar beet molasses in packed bed reactors. In two separate cultures, consortia of fermentative bacteria developed as biofilms on granitic stones. In one of the cultures, a granular sludge was also formed. Metagenomic analysis of the microbial communities by 454-pyrosequencing of amplified 16S rDNA fragments revealed that the overall biodiversity of the hydrogen-producing cultures was quite small. The stone biofilm from the culture without granular sludge was dominated by Clostridiaceae and heterolactic fermentation bacteria, mainly Leuconostocaeae. Representatives of the Leuconostocaeae and Enterobacteriaceae were dominant in both the granules and the stone biofilm formed in the granular sludge culture. The culture containing granular sludge produced hydrogen significantly more effectively than that containing only the stone biofilm: 5.43 vs. 2.8 mol H2/mol sucrose from molasses, respectively. The speculations that lactic acid bacteria may favor hydrogen production are discussed.  相似文献   

13.
14.
15.
16.
ABSTRACT: BACKGROUND: The Dehalococcoides are strictly anaerobic bacteria that gain metabolic energy via the oxidation of H2 coupled to the reduction of halogenated organic compounds. Dehalococcoides spp. grow best in mixed microbial consortia, relying on non-dechlorinating members to provide essential nutrients and maintain anaerobic conditions. A metagenome sequence was generated for the dechlorinating mixed microbial consortium KB-1. A comparative metagenomic study utilizing two additional metagenome sequences for Dehalococcoides-containing dechlorinating microbial consortia was undertaken to identify common features that are provided by the non-dechlorinating community and are potentially essential to Dehalococcoides growth. RESULTS: The KB-1 metagenome contained eighteen novel homologs to reductive dehalogenase genes. The metagenomes obtained from the three consortia were automatically annotated using the MG-RAST server, from which statistically significant differences in community composition and metabolic profiles were determined. Examination of specific metabolic pathways, including corrinoid synthesis, methionine synthesis, oxygen scavenging, and electron-donor metabolism identified the Firmicutes, methanogenic Archaea, and the delta-Proteobacteria as key organisms encoding these pathways, and thus potentially producing metabolites required for Dehalococcoides growth. CONCLUSIONS: Comparative metagenomics of the three Dehalococcoides-containing consortia identified that similarities across the three consortia are more apparent at the functional level than at the taxonomic level, indicating the non-dechlorinating organisms' identities can vary provided they fill the same niche within a consortium. Functional redundancy was identified in each metabolic pathway of interest, with key processes encoded by multiple taxonomic groups. This redundancy likely contributes to the robust growth and dechlorination rates in dechlorinating enrichment cultures.  相似文献   

17.
18.
The effects of wall growth are described for a mixed methane-utilizing bacterial population growing in both batch and continuous culture. These effects are similar to those predicted previously by a theoretical analysis (Topiwala and Hamer, 1971).  相似文献   

19.
20.
The proportion of mutants in a growing culture of organisms will depend upon (a) the rate at which the wild cells produce them (with or without growth), (b) the back mutation rate, and (c) the growth rates of the wild and mutant cells. If the mutation rate without growth and the back mutation rate are neglected, the growth of a mutant is expressed by See PDF for Equation and the ratio of the mutant to wild by See PDF for Equation in which λ = mutation frequency rate constant, "mutation rate," A = growth rate constant of wild cells W, B = growth rate constant of mutant cells M. If the term [B – (1 – 2λ)A] is positive, the proportion of mutants increases continuously. If it is negative, the proportion of mutants reaches a constant value See PDF for Equation If mutation is assumed to occur without growth at the rate C, then the corresponding equations are (11), (12), and (14). See PDF for Equation If (B + CA) is negative and t = ∞, See PDF for Equation If C << A, See PDF for Equation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号