首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of human erythrocytes with the membrane-impermeant carbodiimide 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) in citrate-buffered sucrose leads to irreversible inhibition of phosphate-chloride exchange. The level of transport inhibition produced was dependent on the concentration of citrate present during treatment, with a maximum of approx. 60% inhibition. [14C]Citric acid was incorporated into Band 3 (Mr = 95,000) in proportion to the level of transport inhibition, reaching a maximum stoichiometry of 0.7 mol citrate per mol Band 3. The citrate label was localized to a 17 kDa transmembrane fragment of the Band 3 polypeptide. Citrate incorporation was prevented by the transport inhibitors 4,4'-diisothiocyano- and 4,4'-dinitrostilbene-2,2'-disulfonate. ETC plus citrate treatment also dramatically reduced the covalent labeling of Band 3 by [3H]4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonate (3H2DIDS). Noncovalent binding of stilbene disulfonates to modified Band 3 was retained, but with reduced affinity. We propose that the inhibition of anion exchange in this case is due to carbodiimide-activated citrate modification of a lysine residue in the stilbenedisulfonate binding site, forming a citrate-lysine adduct that has altered transport function. The evidence is consistent with the hypothesis that the modified residue may be Lys a, the lysine residue involved in the covalent reaction with H2DIDS. Treatment of erythrocytes with ETC in the absence of citrate resulted in inhibition of anion exchange that reversed upon prolonged incubation. This reversal was prevented by treatment in the presence of hydrophobic nucleophiles, including phenylalanine ethyl ester. Thus, inhibition of anion exchange by ETC in the absence of citrate appears to involve modification of a protein carboxyl residue(s) such that both the carbodiimide- and the nucleophile-adduct result in inhibition.  相似文献   

2.
W R Odom  T M Bricker 《Biochemistry》1992,31(24):5616-5620
The structural organization of photosystem II proteins has been investigated by use of the zero-length protein cross-linking reagent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and monoclonal and polyclonal antibody reagents. Photosystem II membranes were treated with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide which cross-links amino groups to carboxyl groups which are in van der Waals contact. This treatment did not affect the oxygen evolution rates of these membranes and increased the retention of oxygen evolution after CaCl2 washing. Analysis of the proteins cross-linked by this treatment indicated that two cross-linked species with apparent molecular masses of 95 and 110 kDa were formed which cross-reacted with antibodies against both the 33-kDa manganese-stabilizing protein and the chlorophyll protein CPa-1. Cleavage of the 110-kDa cross-linked species with cyanogen bromide followed by N-terminal sequence analysis was used to identify the peptide fragments of CPa-1 and the manganese-stabilizing protein which were cross-linked. Two cyanogen bromide fragments were identified with apparent molecular masses of 50 and 25 kDa. N-Terminal sequence analysis of the 50-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa fragment of CPa-1 and the intact manganese-stabilizing protein. This strongly suggests that the manganese-stabilizing protein is cross-linked to the large extrinsic loop domain of CPa-1. N-Terminal analysis of the 25-kDa cyanogen bromide fragment indicates that this consists of the C-terminal 16.7-kDa peptide of CPa-1 and the N-terminal 8-kDa peptide of the manganese-stabilizing protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
C Preston  M Seibert 《Biochemistry》1991,30(40):9615-9624
The diphenylcarbazide(DPC)/Mn2+ assay [Hsu, B.-D., Lee, J.-Y., & Pan, R.-L. (1987) Biochim. Biophys. Acta 890, 89-96] was used to assess the amount of the high-affinity Mn-binding site in manganese-depleted photosystem II (PS II) membrane fragments from spinach and Scenedesmus obliquus. The assay mechanism at high DPC concentration was shown to involve noncompetitive inhibition of only half of the control level of DPC donation to PS II by micromolar concentrations of Mn at pH 6.5 (i.e., one of two DPC donation sites is inhibited). At low DPC concentration both DPC and Mn2+ donate to PS II additively. Treatment with the carboxyl amino acid modifier 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) inhibited half of the high-affinity Mn-binding site in spinach and Scenedesmus WT PS II membranes and all of the available site in Scenedesmus LF-1 mutant PS II membranes. A similar EDC concentration dependence was observed in all cases. Addition of 2 mM MnCl2 to the 10 mM EDC modification buffer provided complete protection for the Mn-binding site from modification. This protection was specific for Mn2+; six other divalent cations were ineffective. We conclude that EDC modifies that half of the high-affinity Mn-binding site that is insensitive to the histidine modifier diethyl pyrocarbonate (DEPC) [Seibert, M., Tamura, N., & Inoue, Y. (1989) Biochim. Biophys. Acta 974, 185-191] and directly affects ligands that bind Mn. The effects of EDC and DEPC that influence the high-affinity site are mutually exclusive and are specific to the lumenal side of the PS II membrane. Removal of the two more loosely bound of the four functional Mn from PS II membranes uncovers that part of the high-affinity site associated with carboxyl but not histidyl residues. We suggest that carboxyl residues on reaction center proteins are associated with half of the high-affinity Mn-binding site in PS II and are involved along with histidine residues in binding Mn functional in the O2-evolving process.  相似文献   

4.
The zero-length cross-link between the inhibitory epsilon subunit and one of three catalytic beta subunits of Escherichia coli F1-ATPase (alpha 3 beta 3 gamma delta epsilon), induced by a water-soluble carbodiimide, 1-ethyl-3-[(3-dimethylamino) propyl]-carbodiimide (EDC), has been determined at the amino acid level. Lability of cross-linked beta-epsilon to base suggested an ester cross-link rather than the expected amide. A 10-kDa cross-linked CNBr fragment derived from beta-epsilon was identified by electrophoresis on high percentage polyacrylamide gels. Sequence analysis of this peptide revealed the constituent peptides to be Asp-380 to Met-431 of beta and Glu-96 to Met-138 of epsilon. Glu-381 of beta was absent from cycle 2 indicating that it was one of the cross-linked residues, but no potential cross-linked residue in epsilon was identified in this analysis. A form of epsilon containing a methionine residue in place of Val-112 (epsilon V112M) was produced by site-directed mutagenesis. epsilon V112M was incorporated into F1-ATPase which was then cross-linked with EDC. An 8-kDa cross-linked CNBr fragment of beta-epsilon V112M was shown to contain the peptide of epsilon between residues Glu-96 and Met-112 and the peptide of beta between residues Asp-380 and Met-431. Again residue Glu-381 of beta was notably reduced and no missing residue from the epsilon peptide could be identified, but the peptide sequence limited the possible choices to Ser-106, Ser-107, or Ser-108. Furthermore, an epsilon mutant in which Ser-108 was replaced by cysteine could no longer be cross-linked to a beta subunit in F1-ATPase by EDC. Both mutant forms of epsilon supported growth of an uncC-deficient E. coli strain and inhibited F1-ATPase. These results indicate that the EDC-induced cross-link between the beta and epsilon subunits of F1-ATPase is an ester linkage between beta-Glu-381 and, likely, epsilon-Ser-108. As these residues must be located immediately adjacent to one another in F1-ATPase, our results define a site of subunit-subunit contact between beta and epsilon.  相似文献   

5.
1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), a water-soluble carbodiimide, inhibited ECF1-F0 ATPase activity and proton translocation through F0 when reacted with Escherichia coli membrane vesicles. The site of modification was found to be in subunit c of the F0 portion of the enzyme but did not involve Asp-61, the site labeled by the hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD). EDC was not covalently incorporated into subunit c in contrast to DCCD. Instead, EDC promoted a cross-link between the C-terminal carboxyl group (Ala-79) and a near-neighbor phosphatidylethanolamine as evidenced by fragmentation of subunit c with cyanogen bromide followed by high-pressure liquid chromatography and thin-layer chromatography.  相似文献   

6.
The reaction of the water-soluble carbodimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), with active papain in the presence of the nucleophile ethyl glycinate results in an irreversible inactivation of the enzyme. This inactivation is accompanied by the derivatization of the catalytically essential thiol group of the enzyme (Cys-25) and by the modification of 6 out of 14 of papain's carboxyl groups and up to 9 out of 19 of the enyzme's tyrosyl residues. No apparent irreversible modification of histidine residues is observed. Mercuripapain is also irreversibly inactivated by EDC/ethyl glycinate, again with the concomitant modification of 6 carboxyl groups, up to 10 tyrosyl residues, and no histidine residues; but in this case there is no thiol derivatization. Treatment of either modified native papain or modified mercuripapain with hydroxylamine results in the complete regeneration of free tyrosyl residues but does not restore any activity. The competitive inhibitor benzamidoacetonitrile substantially protects native papain against inactivation and against the derivatization of the essential thiol group as well as 2 of the 6 otherwise accessible carboxyl groups. The inhibitor has no effect upon tyrosyl modification. These findings are discussed in the context of a possible catalytic role for a carboxyl group in the active site of papain.  相似文献   

7.
8.
9.
The parallel acylation of N-{3-[4-(3-aminopropyl)piperazin-1-yl]propyl}-7-chloroquinolin-4-amine with polymer-bound carboxylic acids opened straightforward access to novel aminoquinolines with activity against Plasmodium falciparum strains in vitro. Using this amino scaffold prepared in solution and polymer-bound carboxylic, we have synthesized a series of 29 new compounds in good to excellent yield and purity. Biological evaluation included determination of the activity against a chloroquine (CQ) sensitive strain and a CQ resistant mutant. Most of the novel structures presented here displayed activity against both strains in the lower nanomolar range, four compounds showed an at least fourfold increase in the ratio of inhibition of CQ resistant to sensitive strains over CQ itself. These results suggest that this derivatization technique is a useful method to speed up structure-activity relationship studies on aminoquinolines toward improved activity versus CQ resistant strains of P. falciparum in vitro.  相似文献   

10.
Human plasma cholinesterase was found to be inhibited by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in a biphasic manner. The faster phase of the inhibition led to loss of approximately 50% of the activity (measured at pH 7.0, 30 degrees C, using 2.5 mM butyrylthiocholine) and was irreversible. Inhibition in the slower phase was reversible by 0.25 M hydroxylamine. The protective effect of 1 mM propranolol indicated that the target residue in both phases was localized at the active site. Lineweaver-Burk plots for butyrylthiocholine were obtained at different times during the course of inactivation. It was found that for both native and partially inactivated enzymes the plots could be analyzed in terms of two activities showing hyperbolic saturation with the substrate, with Km values of 0.055 +/- 0.015 and 2.0 +/- 0.2 mM. The carbodiimide affected the maximal velocities of the component activities, leaving the Km's unchanged. The low-Km component was lost in the first phase of the inactivation. The loss of the high-Km component paralleled the second phase. It was concluded that the active sites in the tetrameric enzyme form two classes, differing in their affinity for butyrylthiocholine and their susceptibility to inhibition by the active site-directed carbodiimide.  相似文献   

11.
Skeletal muscle can utilize many different substrates, and traditional methodologies allow only indirect discrimination between oxidative and nonoxidative uptake of substrate, possibly with contamination by metabolism of other internal organs. Our goal was to apply 1H- and 13C-nuclear magnetic resonance spectroscopy to monitor the patterns of [3-13C]lactate and [1,2-13C]acetate (model of simple carbohydrates and fats, respectively) utilization in resting vs. contracting muscle extracts of the isolated perfused rat hindquarter. Total metabolite concentrations were measured by using NADH-linked fluorometric assays. Fractional oxidation of [3-13C]lactate was unchanged by contraction despite vascular endogenous lactate accumulation. Although label accumulated in several citric acid cycle (CAC) intermediates, contraction did not increase the concentration of CAC intermediates in any muscle extracts. We conclude that 1) the isolated rat hindquarter is a viable, well-controlled model for measuring skeletal muscle 13C-labeled substrate utilization; 2) lactate is readily oxidized even during contractile activity; 3) entry and exit from the CAC, via oxidative and nonoxidative pathways, is a component of normal muscle metabolism and function; and 4) there are possible differences between gastrocnemius and soleus muscles in utilization of nonoxidative pathways.  相似文献   

12.
1. Of the 15 tyrosyl residues/subunit of yeast hexokinase A (ATP:D-hexose 6-phosphotransferase) only one residue is specifically modified at pH 8.0 with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. 2. The acylation of this single tyrosyl residue leads to the loss of the enzyme activities (hexokinase and ATPase) by a first-order process, which can be fully reversed by treatment with hydroxylamine. 3. ATP does not protect the enzyme against chemical modification and inactivation; however, glucose exerts a noticeable though indirect protection effect against chemical modification and inactivation. 4. The chemically modified enzyme, purified by column chromatography, has 14% of the activity of the native enzyme, but the Km for ATP-Mg or glucose remains unchanged as does the pH optimum of activity. Results of conformational studies (ultracentrifugation, fluorescence, thermostability and chemical reactivity of the sulfhydryl groups) indicate that the decrease of enzyme activity due to the modification of the tyrosyl residue is related to a localized perturbation of the enzyme active-center region.  相似文献   

13.
The appropriately protected C-1'-hydroxyethyl-3-hydroxypropyl-N9-adenine nucleoside was prepared from 1-pivaloyloxy-5-tert-butyldiphenylsilyloxy-3-pentanol and adenine through the Mitsunobu reaction. One of the terminal hydroxyls was converted to the phosphonomethoxy derivative and the prodrug.  相似文献   

14.
We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH.  相似文献   

15.
Reaction between glucuronic acid and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was monitored by the o-phthalaldehyde (OPA) method, which was developed for the fluorescent assay of compounds containing an amino group. About 1 nmol of glucuronic acid was detected by this method. This EDC-OPA method was effective in detecting not only acidic sugar but also carboxylic acid. Although the sensitivity of the EDC-OPA method was somewhat lower than that of amino acid determination by OPA, a very simple and convenient assay was attained for compounds containing a carboxyl group.  相似文献   

16.
Acyclic N9 adenine nucleosides substituted at C-1' position were prepared by the Mitsunobu reaction of 1-tert-butyldimethylsilyl-4-pivaloylbutan-1,2,4-triol (5) with adenine. Pivaloyl hydroxyl was modified to the phosphonomethoxy derivatives, and the tert-butyldimethylsilyl hydroxyl was converted to methoxy, azido, amino, fluoro, and c-hydroxyethyl and was eliminated to give vinyl. The resulting phosphonic acids were converted to prodrugs also.  相似文献   

17.
The optimal conditions for toxoiding a pertussis toxin (PT) preparation with 1-ethyl-3(3-dimethylaminopropyl) carbodiimide.HCl (EDAC) were determined. The prime factor affecting the toxoiding of PT was the EDAC to protein ratio. A ratio of 40-80: 1 EDAC to protein by weight was optimal for abolishing the acute toxicity, histamine-sensitising and leucocytosis-promoting activities associated with PT, whilst maintaining the antigenicity of the vaccine antigens. An EDAC-toxoid also manifested no late histamine-sensitising activity. Duration of exposure to EDAC, temperature and pH value of the reaction were found not to be critical for toxoiding. The data indicated that the use of EDAC for toxoiding PT in a B. pertussis extract is a simple and reproducible procedure and should be considered as a method for the production of acellular pertussis vaccines.  相似文献   

18.
19.
The possibility of decreasing the water solubility of the films made from fish gelatin and chitosan by modification with TGase was investigated. The effectiveness of enzymatic treatment was also compared with chemical crosslinking using EDC. The treatment of the components with TGase in concentration of 0.2 mg/ml of the film-forming solution limited the solubility of the films at 25 °C from 65% to 28% at pH 6 and from 96% to 37% at pH 3. After 15 min of heating at 100 °C, the modified films were soluble in 23% at pH 6 and in 41% at pH 3. Further decrease of the solubility of the fish gelatin–chitosan films was achieved when enzymatic modification was conducted in the presence of 5–10 mM DTT; the solubility was about twice lower than that without DTT at both studied temperatures and pH values. Generally, the composite films modified with EDC in concentration of 30 mM were distinctly less soluble than films made from the components modified with TGase in the presence of DTT.  相似文献   

20.
A new series of 3-phenyl-N-[3-(4-phenylpiperazin-1yl)propyl]-1H-pyrazole-5-carboxamide derivatives were synthesized and investigated their anti-inflammatory activities using carrageenan-induced rat paw edema model in vivo. All the synthesized compounds were found to be potent anti-inflammatory agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号