首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histological renal anatomy of 10 species of honeyeaters was examined quantitatively, using stereology. The kidneys of five species of predominantly wet zone inhabiting birds: the western spinebill Acanthorhynchus superciliosus , White-checked honeyeater Phylidonyris nigra . New Holland honeyeater Phylidonyris novaehollandiae , little wattlebird anthochaera chrysoptera and red wattlebird Anthochaera carunculata , were compared to five predominantly arid zone inhabiting birds: the grey-fronted honeyeater Meliphaga plumula , white-plumed honeyeater Meliphaga penicillata , white-fronted honeyeater Phylidonyris albifrons , spiny-checked honeyeater Acanthogenys rufogularis and yellow-throated miner Manorina flarigula. The kidneys were asymmetrical, with the left kidney being larger than the right kidney. Kidney mass was directly proportional to body mass (coefficient of correlation, r =+0·95), as was kidney volume to kidney mass (r =+1·0). Wet zone honeyeaters generally and a higher percentage and absolute volume of renal cortex, whilst arid zone honeyeaters generally had a significantly higher percentage and absolute volume of renal medulla. There were few differences between species, in either the percentage or absolute volume or luminal surface area of nephron components within the cortex. Within the medulla, wet zone honeyeaters generally had a higher percentage and absolute luminal surface area of collecting ducts, whilst arid zone honeyeaters had a higher percentage and absolute surface area of capillaries. This may be due to factors such as variations in diet and climate between habitats resulting in differences in honeyeater renal morphology which enable arid zone birds to conserve water and wet zone birds to conserve ions more efficiently.  相似文献   

2.
Feeding by honeyeaters was found to maintain nectar at low levels at three sites studied on Kangaroo Island in May-June 1978. The productivity of nectar at a site and position in a dominance hierarchy appeared to determine which bird species used each site. Correa was the main nectar source in the poorest area and produced 0.05 kJ m?2 per day. The small eastern spinebill was the most abundant honeyeater. The purple-gaped honeyeater also occurred but fed mostly on honeydew. The medium sized New Holland honeyeater was common and territorial in the second area, where Banksia marginata and B. ornata inflorescences and Adenanthos flowers produced 0.7 kJ m?2 of nectar per day. Spinebills and crescent honeyeaters also visited flowers and were sometimes chased by New Holland honeyeaters. The richest site was a flowering Eucalyptus cosmophylla tree (5.1 kJ m?2 of nectar per day). A red wattlebird, the largest honeyeater, held a territory in part of this tree and chased other honeyeaters from the territory. New Holland, crescent and purple-gaped honeyeaters fed on flowers in other parts of the tree. The spinebill was absent. We conclude that nectar was partitioned along a spectrum of rich to poor sources. Larger more aggressive species used and sometimes defended the richest sources while the smaller birds used the poorer sources.  相似文献   

3.
Seasonal changes in numbers and body condition of honeyeaters were examined over 2 years in the New England National Park, New South Wales, Australia. Nectar availability measured as inflorescence density and nectar production were also recorded. In the main study site, the abundance of six of the seven most common species of honeyeater was significantly correlated with inflorescence density. However, honeyeater numbers were not significantly correlated with daily energy productivity. Unlike most honeyeater communities, the New England community was dominated numerically by the Eastern Spinebill, the smallest of the most common species present. Among the most common species, the duration of time a species was recorded in the area was negatively, but not significantly, correlated with its size. All species examined showed similar seasonal changes in body condition, with the highest bodyweights and fat deposits recorded in winter.  相似文献   

4.
The bills and tongues of nectar-feeding birds differ from continent to continent. The major differences are that: (i) the tongues of A Australian honeyeaters are broader any more fimbricated at the tip than the bifurcated tongues of sunbirds and hummingbirds; (ii) the bills of hummingbirds are more uniformly narrow and taper less markedly towards their tips than those of sun-birds and honeyeaters; and (iii) bill curvatures are generally greater for sunbirds and honey-creepers than for hummingbirds. A variety of hummingbirds has straight or even slightly upturned bills, while bills for all sunbirds, honeycreepers and honeyeaters are decurved to some extent. Despite differences in tongue morphology, hummingbirds, sunbirds and honeyeaters extract nectar at a similar range of rates, averaging approximately 40 γL s?1 from ad libitum feeders, and 1–15 γL?1 from flowers. All tongues collect nectar by capillarity, with licking rates of 6–17 s?1. Licking behaviour has been little studied, although speeds of licking respond to changes in sugar concentration and corolla length. The tongues of honeyeaters are broad, and may need to be brush-tipped in order to allow capillary collection of nectar. Brush-tipped tongues can cover large surface areas on each lick, and may allow honeyeaters to exploit nectar and honeydew that is thinly spread over large surface areas. Bill lengths of nectarivorous birds are similar in all regions, though species of hummingbird have the shortest and longest bills. Bill lengths largely determine the range of floral lengths that can be legitimately probed. Maximum floral lengths exceed bill lengths, since hummingbirds, sunbirds and honeyeaters protrude their tongues beyond the tips of their bills. Rates of nectar extraction, however, decline rapidly once the floral length exceeds bill length. Decurved bills may have evolved in honeyeaters and sunbirds to enable perching birds to reach flowers at the ends of branches more easily. Consistent differences in bill length between the sexes suggest that males and females may exploit different floral resources or different proportions of the same resources. For honeyeaters and sunbirds, males have longer bills than females, but the reverse is true for many hummingbirds.  相似文献   

5.
Abstract

Honeyeaters were the most numerous birds in banksia woodland near Perth, Western Australia, throughout the year. Numbers were greatest in a Banksia littoralis swamp, but only during those few months when it contained large amounts of nectar. In the surrounding woodland, numbers were lower but fairly constant during the year. This reflects the smaller amounts of nectar produced throughout the year, by the overlapping flowering patterns of several Banksia and Adenanthos species.

Large and medium-sized honeyeaters (wattlebirds and New Holland Honeyeaters) and flocking silvereyes dominated the swamp when it flowered. In contrast, small honeyeaters (spinebills and Brown Honeyeaters), many of whom were highly territorial residents, comprised the majority of the woodland assemblage throughout the year. These observations support a model based upon aggressive defence of rich nectar sources by the larger honeyeater species, and more efficient exploitation of dispersed flowers by smaller honeyeaters.  相似文献   

6.
Summary Do birds that migrate over longer distances have more pointed wings than more sedentary birds? Within several bird genera, species differ considerably in their migration distances. This makes it possible to study the extent to which different taxa show similar morphological solutions to common selection pressures. I selected 14 species, two from each of seven passerine genera, to maximize within-genus differences in migration distance. Wing lengths and the lengths of eight primary feathers around the wing tip were measured to assess wing length and shape. Primary lengths were transformed to take into account the allometric relationship between the length of each feather and wing length and then collapsed into summary measures of shape by principal component analysis. I used the method of independent contrasts to address the effects of phylogeny. Wing length showed no relationship with migration distance. There was a correlation between migration distance and wing shape. It is concluded that long-distance migration has resulted in convergent morphological evolution of long distal and short proximal primaries, resulting in wing tips close to the leading edge of the wing.  相似文献   

7.
Nectar-feeding birds are prominent in many parts of the world, and vary with respect to body size. Despite the availability of considerable morphometric data, few concerted efforts have been made to assess the influence of attributes such as mass, wing length and leg morphology upon the speed, acceleration, mode and energetic cost of movement by birds between flowers when foraging for nectar. This review attempts to consolidate and interpret available data and highlight areas where further investigations appear warranted. Australian honeyeaters are generally larger, and American hummingbirds smaller, than Hawaiian honeycreepers and sunbirds of Africa or Asia. Sunbirds, honeyeaters and honeycreepers generally perch while extracting nectar from flowers. Hummingbirds usually hover, apparently because suitable perches close to flowers are lacking, and not because hovering increases the speed at which flowers can be visited. Honeyeaters move from one flower to another at speeds that are at least as great as those for hummingbirds. Most passerine nectarivores need to ingest more nectar per day than hummingbirds in order to maintain energy balance, some species devoting more than 60% of the day to foraging. The major consequence of reduced foraging activity by hummingbirds, which spend only 5–30% of the day in this manner, appears to be male emancipation from nest construction and care of offspring. Large nectarivores have a greater capacity to store surplus food and to fast than smaller birds, and so can take advantage of short-lived peaks in nectar abundance. Nectarivores such as honeyeaters should therefore be favoured by the rapid diurnal changes in nectar availability which are characteristic of many Australian and African habitats. Body mass also determines the likely access to rich sources of nectar through size-related interspecific dominance hierarchies. In all families, larger species tend to monopolize the most rewarding nectar supplies, forcing smaller subordinate species to use poorer, more scattered sources. Within particular species, males usually have longer wings and greater masses than females. These variations imply that the two sexes differ with regard to their foraging ecology, although few supporting data are currently available.  相似文献   

8.
Abstract The present study uses differences among frugivore faunas of the southern hemisphere landmasses to test whether frugivore characteristics have influenced the evolution of fruit traits. Strong floristic similarities exist among southern landmasses; for example, 75% of New Zealand vascular plant genera also have species in Australia. However, plants in Australia and South America have evolved in the presence of a range of mammalian frugivores, whereas those in New Zealand, New Caledonia and the Pacific Islands have not. In addition, the avian frugivores in New Zealand and New Caledonia are generally smaller than those of Australia. If frugivore characteristics have influenced the evolution of fruit traits, predictable differences should exist between southern hemisphere fruits, particularly fruit size and shape. Fruit dimensions were measured for 77 New Zealand species and 31 Australian species in trans‐Tasman genera. New Zealand fruits became significantly more ellipsoid in shape with increasing size. This is consistent with frugivore gape size imposing a selective pressure on fruit ingestability. This result is not a product of phylogenetic correlates, as fruit length and width scaled isometrically for Australian species in genera shared with New Zealand. Within‐genus contrasts between New Zealand and Australian species in 20 trans‐Tasman genera showed that New Zealand species have significantly smaller fruits than their Australian counterparts. Within‐genus contrasts between New Zealand and South American species in nine genera gave the same result; New Zealand species had significantly smaller fruits than their South American counterparts. No difference was found in fruit size or shape between New Zealand and New Caledonia congeneric species from 12 genera. These results are consistent with the broad characteristics of the frugivore assemblage influencing the evolution of fruit size and shape in related species. The smaller‐sized New Zealand frugivore assemblage has apparently influenced the evolution of fruit size of colonizing taxa sometimes within a relatively short evolutionary timeframe.  相似文献   

9.
NICK REID 《Austral ecology》1990,15(2):175-190
The mutualism involving mistletoes (Amyema quandangj, spiny-cheeked honeyeaters (Acan-thagenys rufogularis) and mistletoebirds (Dicaeum hirundinaceum) was studied in arid woodland in South Australia between 1980 and 1984. Plants and birds were locally interdependent: mistletoes supplied a continuous resource of fruits or nectar that sustained permanent populations of pollinators (honeyeaters) and dispersers (honeyeaters and mistletoebirds). The reproductive phenology of Amyema quandang was central to the interactions. Amyema quandang flowered in winter and annual fruit crops overlapped so that ripe fruit was continuously available. Spiny-cheeked honeyeaters obtained most of their energy requirements from mistletoe nectar in winter and mistletoe fruit in summer. Higher honeyeater densities were sustained by flowering in winter. Mistletoebirds were present in low density throughout the year and subsisted on a diet of mistletoe fruit and a few insects. The reproductive strategy of A. quandang probably evolved in response to the pollination and dispersal service provided by honeyeaters in inland Australia. Neither spiny-cheeked honeyeaters nor mistletoebirds have adaptations resulting from evolutionary interactions with A. quandang. The high specificity of their mutualism is a result of: (i) the abundance of A. quandang in relation to other nectar and fruit producing plants in the community: (ii) the year-round production by A. quandang of the primary source of fruit or nectar for honeyeaters and mistletoebirds: (iii) the facultative specialization of both birds on A. quandang; and (iv) the reluctance or inability of other frugivorous birds in the community to consume A. quandang fruit.  相似文献   

10.
The foraging behaviour of Australian honeyeaters is reviewed in terms of diet, foraging selectivity, foraging flight mode, quality and quantity of nectar encountered per flower, flower densities encountered and effect of predation. At the same time comparisons are made between honeyeaters and hummingbirds. These two groups of birds are superficially similar. Both feed on nectar and insects. Both tend to have long curved bills and tongues adapted for removal of nectar from flowers. Both tend to feed at long, red flowers. However, on close inspection, honeyeaters and hummingbirds are quite dissimilar. For example, many honeyeaters include fruit in their diets. Hummingbirds almost never eat fruit. Honeyeaters appear to be considerably less nectarivorous and more insectivorous than hummingbirds. Honeyeaters are, for the most part, larger than hummingbirds and they usually perch while feeding whereas hummingbirds usually hover. Honeyeaters but not hummingbirds often flock while feeding. Predation appears to be considerably more important for honeyeaters than for hummingbirds. Territorial defense of flowers seems common in hummingbirds but uncommon in honeyeaters. These differences are discussed in detail and explanations are offered for them wherever possible.  相似文献   

11.
Removal of almost all honeyeater nectar sources from a 5.6 ha area during February to July had no apparent effect on honeyeater nesting or total abundance. Behaviour in the experimental area was also generally unaffected except for the extent of nectar-feeding which was significantly reduced for the most commonly observed species. The honeyeaters must have compensated for the nectar removal by flying to nearby productive areas to feed on nectar. Nectar-removal had no significant effect on the species composition of resident honeyeaters but did affect the species composition of all observed honeyeaters. Nectar removal resulted in a decrease in the abundance of the large and dominant Little Wattlebirds (Anthochaera chrysoptera) and an increase in the abundance of the other, smaller species.  相似文献   

12.
13.
Small birds and bats face strong selection pressure to digest food rapidly in order to reduce digesta mass carried during flight. One mechanism is rapid absorption of a high proportion of glucose via the paracellular pathway (transfer between epithelial cells, not mediated by transporter proteins). Intestinal paracellular permeability to glucose was assessed for two nectarivorous passerines, the Australian New Holland honeyeater (Phylidonyris novaehollandiae) and African white-bellied sunbird (Cinnyris talatala) by measuring the bioavailability of radiolabelled, passively absorbed l -glucose. Bioavailability was high in both species and increased with diet sugar concentration (honeyeaters, 37 and 81% and sunbirds, 53 and 71% for 250 and 1000mmoll-1 sucrose diets, respectively). We conclude that the relative contribution of paracellular to total glucose absorption increases with greater digesta retention time in the intestine, and paracellular absorption may also be modulated by factors such as intestinal lumen osmolality and interaction with mediated glucose uptake. The dynamic state of paracellular absorption should be taken into account in future studies.  相似文献   

14.
Aims Building on molecular studies of widespread Australian vertebrates, we tested whether each of three widespread Australian bird species, namely the singing honeyeater, Lichenostomus virescens, spiny‐cheeked honeyeater, Acanthagenys rufogularis (Passeriformes: Meliphagidae), and black‐faced woodswallow, Artamus cinereus (Passeriformes: Artamidae), has undergone a recent (Pleistocene) range expansion across the Australian continent. We related the findings to the presence or absence of geographic variation in each species’ external phenotype and whether historical or non‐historical factors have been involved in generating variation. Methods A total of 92 specimens of the three species were collected from, as far as possible, the same localities across Australia. They were sampled for mitochondrial DNA (mtDNA) diversity in the 1041 base pairs of the ND2 gene, and these data were analysed with nucleotide diversity statistics, unrooted networks, nested clade analysis, and tests of range expansion or stability. Results Range expansions could not be rejected in any of the species in our study. Each had low, geographically unstructured nucleotide diversity. Patterns of geographic variation in the singing honeyeater's and, to a lesser extent, the black‐faced woodswallow's external phenotypes are not correlated with mtDNA diversity in ND2. Main conclusions Our study adds to the increasing number of data sets suggesting the apparent prevalence of Pleistocene population expansions in widespread Australian birds. Furthermore, it shows that observable geographic structure may evolve very quickly, in response either to environmental gradients or to historical factors that operated too recently to be detected by ND2 sequences (e.g. in the singing honeyeater). Conversely, we have shown that a species that has had a recent population expansion need not necessarily be geographically invariant. To understand fully the interplay between vicariance and dispersal in the history of widespread Australian arid‐zone birds, or between the historical and non‐historical origins of their differentiation, carefully conducted case‐by‐case molecular studies will be necessary. Only then will biogeographical patterns and the processes that led to them emerge. Study of the historical biogeography and the more recent population history of Australian arid‐zone birds has reached a point where mtDNA‐based studies, while still informative and contributing to a growing data base of such work, should be complemented with data from multiple, rapidly evolving nuclear loci.  相似文献   

15.
Abundances of honeyeaters, flowers and flying insects, the daily nectar-energy production per flower and the average size of flying insects were estimated every three weeks for circles of radius 20 m located in three heathland areas near Sydney. Seasonal fluctuations in honeyeater density showed no apparent relationship with seasonal fluctuations in nectar-energy productivity or in biomass of flying insects. Variation between circles in honeyeater density was also unrelated to spatial variation in energy productivity and insect biomass. The relatively low incidence of nectar-feeding and high incidence of flying exhibited by birds observed during troughs in nectar-energy production suggest that many of these birds are transient and that their density may consequently be unrelated to local conditions.  相似文献   

16.
The regent honeyeater (Xanthomyza phrygia) is a large endangered honeyeater from eastern and south-eastern Australia. Little is known about the ecology of this bird during the autumn-winter period, when it is absent from its breeding areas. In this study, food consumption and body condition of captive regent honeyeaters were studied during this period. Nectar was the dominant component of the regent honeyeaters diet and varied significantly throughout the study, peaking in early July. Fruit and mealworm consumption also showed significant seasonal shifts with maxima in late June and early March, respectively. In general, immature birds consumed significantly more protein-rich food than adults. The average body mass of the male birds varied significantly with season. Female birds did not show a significant seasonal change in body mass but, similarly to males, attained their highest mass in late April. Fat deposition changed significantly over months, with highest levels of fat recorded from late April until late June. These seasonal trends, independent of food abundance, may suggest that body condition within this species is controlled endogenously.Communicated by F. Bairlein  相似文献   

17.
To mitigate the impact of noisy miners Manorina melanocephala on Australia’s woodland birds, there is a need to identify locations where noisy miner suppression can be affordable, sustainable and facilitate woodland bird recovery. In 2017, we suppressed noisy miners from the Goulburn River, NSW for at least three months. During this period, six pairs of critically endangered regent honeyeaters nested in the treatment area. In 2018, we continued monitoring the original noisy miner treatment area, which was expanded to include our 2017 control area, and established a new control area downstream. In 2019, the removal effort was again expanded to include the 2018 control area. In the 2017 treatment area, noisy miners remained suppressed up to 27 months post‐removal. Their numbers here were lower 1 year after the initial cull than in the week after it. In the 2018 and 2019 treatment areas, noisy miner abundance was significantly lower after respective culls than at all pre‐removal periods. In 2018, around 20 vulnerable painted honeyeaters occupied the 2018 treatment area. In 2019, two regent honeyeater pairs nested in and at least 40 painted honeyeaters occupied the treatment area. Songbird abundance increased within seasons and also up to a year following noisy miner removal, and plateaued thereafter. We show how, in strategic locations, a week of noisy miner suppression each spring can sequentially create ever‐larger landscapes where noisy miner impacts on threatened woodland birds are minimal.  相似文献   

18.
The Australasian robins (Petroicidae) comprise a relatively homogeneous group of small to medium-sized insectivorous birds. Their center of diversity is Australia and New Guinea (40 species) but seven species have managed to colonize geographically distant islands such as Tanimbar, New Britain, New Zealand, New Caledonia, Norfolk Island, Vanuatu, Solomon Islands, Fiji and Samoa. To resolve the evolutionary relationships within the Petroicidae, we here present the results of a phylogenetic analysis of sequence data from two mitochondrial genes (ND2, CO1) and one nuclear intron (β-Fibrinogen intron 5) for all 14 genera and 40 of the 46 currently recognized species. All phylogenetic analyses identified six primary lineages, treated here as subfamilies, within the Petroicidae: (1) Eopsaltriinae comprising Eopsaltria (excluding E. flaviventris), Tregellasia, Peneothello, Melanodryas, Poecilodryas and Heteromyias; (2) Drymodinae comprising Drymodes; (3) Microecinae comprising Microeca, Monachella and Eopsaltria flaviventris; (4) Petroicinae comprising Petroica and Eugerygone; (5) Pachycephalopsinae comprising Pachycephalopsis; and (6) Amalocichlinae comprising Amalocichla. The genera Eopsaltria, Microeca, Peneothello and Poecilodryas were found to be paraphyletic. Based on assessments of phylogenetic branching patterns and/or DNA divergence it also was apparent that Eopsaltriaaustralis, Tregellasialeucops, Melanodryascucullata, Heteromyiasalbispecularis, Drymodessupercilious and Microecaflavigaster may each comprise more than one species. The Petroicidae display a complex biogeographical history involving repeated radiations both within, and across Australia and New Guinea. It appears that dispersal into smaller islands such as New Britain, Tanimbar and the South Pacific has only been undertaken by species with a "flycatcher" body form.  相似文献   

19.
The survival rate of Australian passerines   总被引:1,自引:0,他引:1  
The Australian avifauna is composed largely of two groups–the 'old endemics', species that originated in Gondwana and radiated in Australia and New Guinea, and the 'new invaders', species that originated in Asia and invaded Australia during the Pleistocene. In addition, several species were introduced by Europeans during the last 200 years. The old endemics have clutch-sizes significantly smaller than those of the new invaders (Yom-Tov 1987). The aim of this paper was to study the survival rates of Australian passerines from the three groups.
The survival rates of 3 5 species of Australian passerines were calculated by using recapture data provided by the Australian Bird Banding Scheme for birds older than one year. Survival depends primarily on body-mass, with no difference between the old endemics and the new invaders. It is suggested that the survival rates of birds younger than one year is different between the two main groups.
Overall, the survival rates of Australian passerines is at least 1.2 greater than that of equal-sized British passerines. The survival rates of the introduced House Sparrow Passer domesticus and Blackbird Turdus merula were similar on the two continents, suggesting either that insufficient time had elapsed since their introduction to Australia for them to adapt to local conditions, or that the habitats occupied in Australia were so modified by human activities that selection did not favour long lives. The survival rate of the introduced Starling Sturnus vulgaris was lower in Australia, probably because it lives in natural habitats there.  相似文献   

20.
The loss of biodiversity following fragmentation and degradation of habitat is a major issue in conservation biology. As competition for resources increases following habitat loss and fragmentation, severe population declines may occur even in common, highly mobile species; such demographic decline may cause changes within the population structure of the species. The regent honeyeater, Anthochaera phrygia, is a highly nomadic woodland bird once common in its native southeast Australia. It has experienced a sharp decline in abundance since the late 1970s, following clearing of large areas of its preferred habitat, box-ironbark woodland, within the last 200 years. A captive breeding program has been established as part of efforts to restore this species. This study used genetic data to examine the range-wide population structure of regent honeyeaters, including spatial structure, its change through time, sex differences in philopatry and mobility, and genetic differences between the captive and wild populations. There was low genetic differentiation between birds captured in different geographic areas. Despite the recent demographic decline, low spatial structure appears to have some temporal consistency. Both sexes appear to be highly mobile, and there does not seem to be significant genetic differentiation between the captive and wild populations. We conclude that management efforts for survival of this species, including habitat protection, restoration, and release of captive-bred birds into the wild, can treat the species as effectively a single genetic population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号