共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The genetic manipulation of the human fungal pathogen Candida albicans is difficult because of its diploid genome, the lack of a known sexual phase and its unusual codon usage. We devised a new method for sequential gene disruption in C. albicans that is based on the repeated use of the URA3 marker for selection of transformants and its subsequent deletion by FLP-mediated, site-specific recombination. A cassette was constructed that, in addition to the URA3 selection marker, contained an inducible SAP2P-FLP fusion and was flanked by direct repeats of the minimal FLP recognition site (FRT). This URA3 flipper cassette was used to generate homozygous C. albicans mutants disrupted for both alleles of either the CDR4 gene, encoding an ABC transporter, or the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily. After insertion of the URA3 flipper into the first copy of the target gene, the whole cassette could be efficiently excised by induced FLP-mediated recombination, leaving one FRT site in the disrupted allele of the target gene. The URA3 flipper was then used for another round of mutagenesis to disrupt the second allele. Deletion of the cassette from primary and secondary transformants occurred exclusively by intrachromosomal recombination of the FRT sites flanking the URA3 flipper, whereas interchromosomal recombination between FRT sites on the homologous chromosomes was never observed. This new gene disruption strategy facilitates the generation of specific, homozygous C. albicans mutants as it eliminates the need for a negative selection scheme for marker deletion and minimizes the risk of mitotic recombination in sequential disruption experiments. 相似文献
3.
4.
Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene. 总被引:39,自引:6,他引:33 下载免费PDF全文
Candida albicans is a diploid dimorphic yeast with no known sexual cycle. The development of a DNA transformation system would greatly improve the prospects for genetic analyses of this yeast. Plasmids were isolated from a Candida Sau3A partial library which complements the ade2-1 and ade2-5 mutations in Saccharomyces cerevisiae. These plasmids contain a common region, part of which, when subcloned, produces ade2 complementation. Among the small number of auxotrophs previously isolated in C. albicans, red adenine-requiring mutants had been identified by several groups. In two of these strains, the cloned Candida DNA transformed the mutants to ADE+ at frequencies of 0.5 to 5 transformants per micrograms of DNA. In about 50% of the transformants, plasmid DNA sequences became stably integrated into the host genome and, in the several cases analyzed by Southern hybridization, the DNA was integrated at the site of the ADE2 gene in one of the chromosomal homologs. 相似文献
5.
Abstract A total of 130 isolates of Candida albicans obtained from oral, vaginal and skin sites, were biotyped using the API 20C sugar assimilation system. One major biotype accounted for 75% of the isolates, while 12 minor biotypes accounted for the rest. The API 20C system may therefore be useful in supplementing other biotyping schemes of C. albicans available at present. 相似文献
6.
由于lacZ基因在白色念珠菌中不能工作。将克氏酵母的β-半乳糖苷酶基因Kl LAC4构建了能在白色念珠菌中工作的报告基因。Kl LAC4基因融合到白色念珠菌乙醇脱氢酶基因(ADH1)的启动子后面,在ADH1终止子的共同控制下构建Kl LAC4的表达质粒pYPB1-LAC4。PYOB1-LAC4转化白色念珠菌并测定了在固体培养基中的β-半乳糖苷酶活性以及在液体增减基的β-半乳糖苷酶活力。结果表明Kl 相似文献
7.
白色念珠菌是一种重要的人体致病真菌 ,致病机制与其形态发生紧密相关。酿酒酵母Flo8因子在其形态发生中起重要作用 ,我们把白色念珠菌基因组DNA导入酿酒酵母flo8基因缺失株中 ,筛选能够互补 flo8侵入生长缺陷的基因 ,分离到了一个与酿酒酵母SRB9同源的新基因 ,命名为CaSRB9。该基因全长 4998bp ,编码一种16 6 5个氨基酸的蛋白质。在双倍体酿酒酵母中CaSRB9可以部分互补MAPK途径基因缺失株以及 flo8缺失株的菌丝生长缺陷 ;在单倍体酿酒酵母中表达能够互补 flo8缺失株的侵入生长缺陷 ,但在MAPK途径基因缺失株中不能形成侵入生长 相似文献
8.
Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus
The yeast Kluyveromyces marxianus presents several interesting features that make this species a promising industrial yeast for the production of several compounds. In order to take full advantage of this yeast and its particular properties, proper tools for gene disruption and metabolic engineering are needed. The Cre-loxP system is a very versatile tool that allows for gene marker rescue, resulting in mutant strains free of exogenous selective markers, which is a very important aspect for industrial application. As the Cre-loxP system works in some non-conventional yeasts, namely Kluyveromyces lactis, we wished to know whether it also works in K. marxianus. Here, we report the validation of this system in K. marxianus CBS 6556, by disrupting two copies of the LAC4 gene, which encodes a beta-galactosidase activity. 相似文献
9.
One-step gene disruption by cotransformation to isolate double auxotrophs in Candida albicans 总被引:11,自引:0,他引:11
Summary The Candida albicans LEU2 gene was disrupted by substituting lambda DNA for a small deletion within the LEU2 gene. Cotransformation with a selectable URA3 ARS vector was used to introduce a linear fragment containing the disruption into the genome of a C. albicans ura3 deletion mutant. Cotransformants containing the lambda DNA were identified by colony hybridization and the URA3 plasmid was subsequently cured. Leu2 disrupted heterozygotes were detected by Southern hybridization and one disruptant was subsequently treated with UV irradiation. Only one leu2 ura3 mutant (SGY-484) was isolated out of 11,000 mutagenized cells. SGY-484 was transformed to Leu+ with either the C. albicans or Saccharomyces cerevisiae LEU2 gene. Southern hybridization analysis revealed that the mutant is not homozygous for the disruption; the leu2 mutation reverts and is most likely a point mutation. Unexpectedly, an ade2 ura3 mutant was isolated from the same mutagenesis. 相似文献
10.
Wonjong Lee 《Free radical research》2018,52(1):39-50
Itraconazole (ITC), a well-known fungistatic agent, has potent fungicidal activity against Candida albicans. However, its mechanism of fungicidal activity has not been elucidated yet, and we aimed to identify the mechanism of ITC against C. albicans. ITC caused cell shrinkage via potassium leakage through the ion channel. Since shrunken cells could indicate apoptosis, we investigated apoptotic features. Annexin V-FITC and TUNEL assays indicated that fungicidal activity of ITC was involved in apoptosis. Subsequently, we confirmed an intracellular factor that could cause apoptosis. ITC treatment caused reactive oxygen species (ROS) accumulation. To confirm whether ROS is related with ITC-triggered cell death, cell viability was examined using the ROS scavenger N-acetylcysteine (NAC). NAC pretreatment recovered ITC-induced cell death, indicating that antifungal activity of ITC is associated with ROS, which is also confirmed by impaired glutathione-related antioxidant system and oxidized intracellular lipids. Moreover, ITC-induced mitochondrial dysfunction, in turn, triggered cytochrome c release and metacaspase activation, leading to apoptosis. Unlike the only ITC-treatment group, cells with NAC pretreatment did not show significant damage to mitochondria, and attenuated apoptotic features. Therefore, our results suggest that ITC induces apoptosis as fungicidal mechanism, and intracellular ROS is major factor to trigger the apoptosis by ITC in C. albicans. 相似文献
11.
A new minimal synthetic medium, with low amount of glucose, without aminoacids, vitamins and neutral pH, which induces germ-tubes production in Candida albicans, is reported in this work. The results indicate a perfect agreement between the germ-tube test performed with the standard method in human or animal serum and this test performed in minimal synthetic medium. In this medium the germ-tube test for the presumptive identification of Candida albicans can be performed with the same formality, time and reproducibility as those in human or animal serum. This constitutes an interesting finding because it is easy to prepare, to store and is highly reproducible. 相似文献
12.
Marina Luongo Amalia Porta Bruno Maresca 《FEMS immunology and medical microbiology》2013,1830(3):471-478
During macrophage infection Candida albicans expresses differentially several genes whose functions are associated with its survival strategy. Among others, we have isolated CaGS gene, which is homologous to SNF3, a glucose sensor of Saccharomyces cerevisiae. To elucidate its potential role during infection, CaGS has been disrupted and the resulting phenotype analyzed on different solid media. The null mutant lost the ability to form hyphae on a medium with low glucose concentration and serum. Furthermore, this mutant does not disrupt macrophage in in vitro infections. We believe that this putative glucose sensor is involved in hyphal development during macrophage infection. 相似文献
13.
During macrophage infection Candida albicans expresses differentially several genes whose functions are associated with its survival strategy. Among others, we have isolated CaGS gene, which is homologous to SNF3, a glucose sensor of Saccharomyces cerevisiae. To elucidate its potential role during infection, CaGS has been disrupted and the resulting phenotype analyzed on different solid media. The null mutant lost the ability to form hyphae on a medium with low glucose concentration and serum. Furthermore, this mutant does not disrupt macrophage in in vitro infections. We believe that this putative glucose sensor is involved in hyphal development during macrophage infection. 相似文献
14.
15.
URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes 总被引:4,自引:0,他引:4
The ability to generate isogenic sets of strains with mutations in a gene of interest but not in other genes by repeated use of the URA3 marker (Ura-blaster methodology) has advanced our understanding of the relationships between gene structure and function in Candida albicans. Common applications of Ura-blaster technology result in different genomic positions for the URA3 gene in strains complemented for the gene of interest compared with mutant strains. Studies using animal models of systemic candidiasis pointed to possible differences in URA3 gene expression, depending on its genomic location, which confounded interpretation of the role of the gene of interest in lethality. Positional effects on URA3 expression can be avoided by placement at a common locus in all strains used for comparison. 相似文献
16.
Resistance of the pathogenic yeast Candida albicans to the antifungal agent fluconazole is often caused by active drug efflux out of the cells. In clinical C. albicans strains, fluconazole resistance frequently correlates with constitutive activation of the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily that is not expressed detectably in fluconazole-susceptible isolates. However, the molecular changes causing MDR1 activation have not yet been elucidated, and direct proof for MDR1 expression being the cause of drug resistance in clinical C. albicans strains is lacking as a result of difficulties in the genetic manipulation of C. albicans wild-type strains. We have developed a new strategy for sequential gene disruption in C. albicans wild-type strains that is based on the repeated use of a dominant selection marker conferring resistance against mycophenolic acid upon transformants and its subsequent excision from the genome by FLP-mediated, site-specific recombination (MPAR-flipping). This mutagenesis strategy was used to generate homozygous mdr1/mdr1 mutants from two fluconazole-resistant clinical C. albicans isolates in which drug resistance correlated with stable, constitutive MDR1 activation. In both cases, disruption of the MDR1 gene resulted in enhanced susceptibility of the mutants against fluconazole, providing the first direct genetic proof that MDR1 mediates fluconazole resistance in clinical C. albicans strains. The new gene disruption strategy allows the generation of specific knock-out mutations in any C. albicans wild-type strain and therefore opens completely novel approaches for studying this most important human pathogenic fungus at the molecular level. 相似文献
17.
Gene silencing mediated by RNA interference (RNAi) was first discovered in Caenorhabditis elegans, and was subsequently recognized in various other organisms. In mammalian cells, RNAi can be induced by small interfering RNAs (siRNAs). In earlier studies, our group developed a vector-based system for expression of siRNA under control of a polymerase III promoter, the U6 promoter, which can induce RNAi in living cells. We here describe a system for controlling the U6 promoter-driven expression of siRNA using the Cre-loxP recombination system. We constructed a 'Cre-On' siRNA expression vector which could be switched on upon excision catalyzed by Cre recombinase, which was delivered to cells directly from the medium as a fusion protein. An examination of the effectiveness of RNAi against a reporter gene revealed that addition of TAT-NLS-Cre (where NLS is a nuclear localization signal and TAT is a peptide of 11 amino acids derived from HIV) to the medium resulted in plasmid recombination, generation of siRNA and suppression of reporter activity. This system should allow us to induce RNAi in a spatially, temporally, cell type-specifically or tissue-specifically controlled manner and potentiate the improved application of RNAi in both an experimental and a therapeutic context. 相似文献
18.
Cloning and Characterization of PRA1, a Gene Encoding a Novel pH-Regulated Antigen of Candida albicans 下载免费PDF全文
Maria Sentandreu M. Victoria Elorza Rafael Sentandreu William A. Fonzi 《Journal of bacteriology》1998,180(2):282-289
Candida albicans is an opportunistic fungal pathogen of humans. The cell wall of the organism defines the interface between the pathogen and host tissues and is likely to play an essential and pivotal role in the host-pathogen interaction. The components of the cell wall critical to this interaction are undefined. Immunoscreening of a lambda expression library with sera raised against mycelial cell walls of C. albicans was used to identify genes encoding cell surface proteins. One of the positive clones represented a candidal gene that was differentially expressed in response to changes in the pH of the culture medium. Maximal expression occurred at neutral pH, with no expression detected below pH 6.0. On the basis of the expression pattern, the corresponding gene was designated PRA1, for pH-regulated antigen. The protein predicted from the nucleotide sequence was 299 amino acids long with motifs characteristic of secreted glycoproteins. The predicted surface localization and N glycosylation of the protein were directly demonstrated by cell fractionation and immunoblot analysis. Deletion of the gene imparted a temperature-dependent defect in hypha formation, indicating a role in morphogenesis. The PRA1 protein was homologous to surface antigens of Aspergillus spp. which react with serum from aspergillosis patients, suggesting that the PRA1 protein may have a role in the host-parasite interaction during candidal infection. 相似文献
19.
A lactate permease was biochemically identified in Candida albicans RM1000 presenting the following kinetic parameters at pH 5.0: Km 0.33+/-0.09 mM and Vmax 0.85+/-0.06 nmol s(-1) mg dry wt(-1). Lactate uptake was competitively inhibited by pyruvic and propionic acids; acetic acid behaved as a non-competitive substrate. An open reading frame (ORF) homologous to Saccharomyces cerevisiae gene JEN1 was identified (CaJEN1). Deletions of both CaJEN1 alleles of C. albicans (resulting strain CPK2) resulted in the loss of all measurable lactate permease activity. No CaJEN1 mRNA was detectable in glucose-grown cells neither activity for the lactate transporter. In a medium containing lactic acid, CaJEN1 mRNA was detected in the RM1000 strain, and no expression was found in cells of CPK2 strain. In a strain deleted in the CaCAT8 genes the expression of CaJEN1 was significantly reduced, suggesting the role of this gene as an activator for CaJEN1 expression. Both in C. albicans and in S. cerevisiae cells CaJEN1-GFP fusion was expressed and targeted to the plasma membrane. The native CaJEN1 was not functional in a S. cerevisiae jen1delta strain. Changing ser217-CTG codon (encoding leucine in S. cerevisiae) to a TCC codon restored the permease activity in S. cerevisiae, proving that the CaJEN1 gene codes for a monocarboxylate transporter. 相似文献
20.
Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions 总被引:13,自引:0,他引:13
Disruption of newly identified genes in the pathogen Candida albicans is a vital step in determination of gene function. Several gene disruption methods described previously employ long regions of homology flanking a selectable marker. Here, we describe disruption of C. albicans genes with PCR products that have 50 to 60 bp of homology to a genomic sequence on each end of a selectable marker. We used the method to disrupt two known genes, ARG5 and ADE2, and two sequences newly identified through the Candida genome project, HRM101 and ENX3. HRM101 and ENX3 are homologous to genes in the conserved RIM101 (previously called RIM1) and PacC pathways of Saccharomyces cerevisiae and Aspergillus nidulans. We show that three independent hrm101/hrm101 mutants and two independent enx3/enx3 mutants are defective in filamentation on Spider medium. These observations argue that HRM101 and ENX3 sequences are indeed portions of genes and that the respective gene products have related functions. 相似文献