首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human leptin is a 16-kDa (146-amino-acid) protein that is secreted from adipocytes and influences body weight homeostasis. In order to obtain high-level production of leptin, the human obese gene coding for leptin was expressed in Escherichia coli BL21(DE3) under the strong inducible T7 promoter. The recombinant leptin was produced as inclusion bodies in E. coli, and the recombinant leptin content was as high as 54% of the total protein content. For production of recombinant human leptin in large amounts, pH-stat fed-batch cultures were grown. Expression of leptin was induced at three different cell optical densities at 600 nm (OD600), 30, 90, and 140. When cells were induced at an OD600 of 90, the amount of leptin produced was 9.7 g/liter (37% of the total protein). After simple purification steps consisting of inclusion body isolation, denaturation and refolding, and anion-exchange chromatography, 144.9 mg of leptin that was more than 90% pure was obtained from a 50-ml culture, and the recovery yield was 41.1%.  相似文献   

2.
A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained with heating/cooling Peltier devices. Data from pH, DO, and turbidity sensors are collected on a FieldPoint (National Instruments) I/O interface and are processed and recorded by a LabVIEW program on a personal computer, which enables feedback control of the culture parameters. A high-density medium formulation was designed, which enabled us to grow E. coli to OD600 up to 100 in batch cultures with oxygen-enriched aeration. Accordingly, the biomass and the amount of recombinant protein produced in a 70-ml culture were at least equivalent to the biomass and the amount of recombinant protein obtained in a Fernbach flask with 1 liter of conventional medium. Thus, the microfermentor battery appears to be well suited for automated parallel cultures and process optimization, such as that needed for structural genomics projects.  相似文献   

3.
In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD600 of 2–10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD600 of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al2O3 as catalyst in toluene with the yield of 96 %.  相似文献   

4.
This study describes comparison between IPTG and lactose induction on expression of caprine growth hormone (cGH), enhancing cell densities of Escherichia coli cultures and refolding the recombinant cGH, produced as inclusion bodies, to biologically active state. 2–3 times higher cell densities were obtained in shake flask cultures when induction was done with lactose showing almost same level of expression as in case of IPTG induction. With lactose induction highest cell densities were achieved in TB (OD600 16.3) and M9NG (OD600 16.1) media, producing 885 and 892 mg cGH per liter of the culture, respectively. Lactose induction done at mid-exponential stage resulted in a higher cell density and thus higher product yield. cGH over-expressed as inclusion bodies was solubilized in 50 mM Tris–Cl buffer (pH 12.5) containing 2 M urea, followed by dilution and lowering the pH in a step-wise manner to obtain the final solution in 50 mM Tris–Cl (pH 9.5). The cGH was purified by Q-Sepharose chromatography followed by gel filtration with a recovery yield of 39% on the basis of total cell proteins. The product thus obtained showed a single band by SDS–PAGE analysis. MALDI-TOF analysis showed a single peak with a mass of 21,851 dalton, which is very close to its calculated molecular weight. A bioassay based on proliferation of Nb2 rat lymphoma cells showed that the purified cGH was biologically active.  相似文献   

5.
The heterologous production of a thermoactive alcohol dehydrogenase (AdhC) from Pyrococcus furiosus in Escherichia coli was investigated. E. coli was grown in a fed-batch bioreactor in minimal medium to high cell densities (cell dry weight 76 g/l, OD600 of 150). Different cultivation strategies were applied to optimize the production of active AdhC, such as lowering the cultivation temperature from 37 to 28°C, heat shock of the culture from 37 to 42°C and from 37 to 45°C, and variation of time of induction (induction at an OD600 of 40, 80 and 120). In addition to the production of active intracellular protein, inclusion bodies were always observed. The maximal activity of 30 U/l (corresponding to 6 mg/l active protein) was obtained after a heat shock from 37 to 42°C, and IPTG induction of the adhC expression at an OD600 of 120. Although no general rules can be provided, some of the here presented variations may be applicable for the optimization of the heterologous production of proteins in general, and of thermozymes in particular.  相似文献   

6.
Limited cell growth and the resulting low volumetric productivity of ethanologenic Escherichia coli KO11 in mineral salts medium containing xylose have been attributed to inadequate partitioning of carbon skeletons into the synthesis of glutamate and other products derived from the citrate arm of the anaerobic tricarboxylic acid pathway. The results of nuclear magnetic resonance investigations of intracellular osmolytes under different growth conditions coupled with those of studies using genetically modified strains have confirmed and extended this hypothesis. During anaerobic growth in mineral salts medium containing 9% xylose (600 mM) and 1% corn steep liquor, proline was the only abundant osmolyte (71.9 nmol ml−1 optical density at 550 nm [OD550] unit−1), and growth was limited. Under aerobic conditions in the same medium, twice the cell mass was produced, and cells contained a mixture of osmolytes: glutamate (17.0 nmol ml−1 OD550 unit−1), trehalose (9.9 nmol ml−1 OD550 unit−1), and betaine (19.8 nmol ml−1 OD550 unit−1). Two independent genetic modifications of E. coli KO11 (functional expression of Bacillus subtilis citZ encoding NADH-insensitive citrate synthase; deletion of ackA encoding acetate kinase) and the addition of a metabolite, such as glutamate (11 mM) or acetate (24 mM), as a supplement each increased the intracellular glutamate pool during fermentation, doubled cell growth, and increased volumetric productivity. This apparent requirement for a larger glutamate pool for increased growth and volumetric productivity was completely eliminated by the addition of a protective osmolyte (2 mM betaine or 0.25 mM dimethylsulfoniopropionate), consistent with adaptation to osmotic stress rather than relief of a specific biosynthetic requirement.  相似文献   

7.
Escherichia coli physiology in Luria-Bertani broth   总被引:1,自引:0,他引:1       下载免费PDF全文
Luria-Bertani broth supports Escherichia coli growth to an optical density at 600 nm (OD600) of 7. Surprisingly, however, steady-state growth ceases at an OD600 of 0.3, when the growth rate slows down and cell mass decreases. Growth stops for lack of a utilizable carbon source. The carbon sources for E. coli in Luria-Bertani broth are catabolizable amino acids, not sugars.  相似文献   

8.
Various host–vector combinations were tested to maximize the extracellular production of recombinant asparaginase in Escherichia coli. Expression of recombinant asparaginase fused to pelB leader sequence under the inducible T7lac promoter in BLR (DE3) host cells resulted in optimum extracellular production in shake-flasks. Fed-batch studies were carried out using this recombinant strain and an exponential feeding strategy was used to maintain a specific growth rate of 0.3 h–1. To check the effect of the time of induction on expression, cultures were induced with 1 mM isopropyl--D-thiogalactopyranoside at varying cell optical densities (OD600: 33, 60, 90, 135). Although the specific product formation rates declined with increasing OD of induction, a maximum volumetric activity of 8.7×105 units l–1, corresponding to 5.24 g l–1 of recombinant asparaginase, was obtained when induction was done at an OD600 of 90. The recombinant protein was purified directly from the culture medium, using a rapid two-step purification strategy, which resulted in a recovery of 70% and a specific activity of 80% of that of the native enzyme.  相似文献   

9.
The effect of temperature on the formation of recombinant protein, apolipoprotein A-IMilano was investigated in the present study. The temperature of the initial growth phase was set at 30°C, while temperature variation in induction phase was arranged in three modes. High cell-density culture of Escherichia coli and high expression of recombinant human by twice temperature-shifted induction were carried out. Experimental results showed that ApoA-IMilano reached 4.8 g/L with the final cell density of OD600, 150. It was found that twice temperature-shifted induction could successfully avoid the effect of acetic acid on cell density and the expression of the product. The present study provides a basic procedure for the production of recombinant ApoA-IMilano.  相似文献   

10.
High-level expression of soluble recombinant human hemoglobin (rHb) in Escherichia coli was obtained with several hemoglobin variants. Under identical conditions, two rHbs containing the Presbyterian mutation (Asn-108→Lys) in β-globin accumulated to approximately twofold less soluble globin than rHbs containing the corresponding wild-type β-globin subunit accumulated. The β-globin Providence(asp) mutation (Lys-82→Asp) significantly improved soluble rHb accumulation compared to the wild-type β-globin subunit and restored soluble accumulation of rHbs containing the Presbyterian mutation to wild-type levels. The Providenceasp substitution introduced a negatively charged residue into the normally cationic 2,3-bisphosphoglycerate binding pocket, potentially reducing the electrostatic repulsion in the absence of the polyanion. The average soluble globin accumulation when there was coexpression of di-α-globin and β-Lys-82→Asp-globin (rHb9.1) and heme was present in at least a threefold molar excess was 36% ± 3% of the soluble cell protein in E. coli. The average total accumulation (soluble globin plus insoluble globin) was 56% ± 7% of the soluble cell protein. Fermentations yielded 6.0 ± 0.3 g of soluble rHb9.1 per liter 16 h after induction and 6.4 ± 0.2 g/liter 24 h after induction. The average total globin yield was 9.4 g/liter 16 h after induction. High-level accumulation of soluble rHb in E. coli depends on culture conditions, the protein sequence, and the molar ratio of the heme cofactor added.  相似文献   

11.
辛玉峰  曲晓华 《微生物学报》2017,57(12):1898-1907
【目的】为了体现并突出亚硝酸盐还原酶在污水脱氮以及短程硝化中的重要性,对过表达亚硝酸盐还原酶的大肠杆菌进行了污水脱氮的研究。【方法】通过转化带有亚硝酸盐还原酶基因的重组质粒,将亚硝酸盐还原酶在大肠杆菌中过表达,通过分析重组大肠杆菌的产物研究了该酶的表达及还原亚硝酸盐的情况,通过将该重组菌与已报道的硝化-反硝化细菌或生活污水进行混合培养,研究重组菌用于辅助氨氮去除的短程硝化能力。【结果】重组大肠杆菌能正确表达亚硝酸盐还原酶,OD600=2.0的菌悬液在2 h内还原约1 mmol/L的亚硝酸盐,并产生几乎等量的一氧化氮;重组大肠杆菌与Acinetobacter sp.YF14菌株等比例混合时,12 h能够提高氨氮脱氮效率约(36.0±7.4)%,且在4 h时,最大亚硝酸盐的积累量减少37%;重组大肠杆菌(OD600=1.0)12 h内能够提高污水厂活性污泥的脱氮效率约(31.0±5.7)%,且未检测到亚硝酸盐和硝酸盐的积累;溶氧水平对于亚硝酸盐还原酶重组菌辅助脱氮具有明显的影响,中等溶氧量[(6.4?0.7)mg/L]时脱氮效果最好。【结论】过表达亚硝酸盐还原酶的大肠杆菌可以提高污水脱氮的短程硝化能力。  相似文献   

12.
To enhance laccase yield, the laccase gene from Bacillus vallismortis fmb-103 was cloned and heterologously expressed in Escherichia coli BL21 (DE3) cells. The auto-induction strategy was applied during fermentation, and the process was controlled, as follows: Cu2+ was added when the optical density at 600 nm (OD600) was 0.3, the fermentation temperature was adjusted to 16 °C when the OD600 was 0.9, and fermentation was stopped after 50 h. The yield of recombinant laccase was up to 3420 U/L, as assayed by 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Recombinant laccase was purified 4.47-fold by heating for 10 min at 70 °C and dialyzing against 50–60% ammonium sulfate, retained more than 50% activity after 10 h at 70 °C, and demonstrated broad pH stability. Malachite green was efficiently degraded by recombinant laccase, especially in combination with mediators. These results provided a basis for the future application of recombinant laccase to malachite green degradation.  相似文献   

13.
The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH) and Latarcin 1 (LATA) were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM) compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM) with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold) compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer chemotherapy agent.  相似文献   

14.
High-Level Production of Recombinant Human Parathyroid Hormone 1-34   总被引:4,自引:1,他引:3       下载免费PDF全文
Expression of the synthetic human parathyroid hormone 1-34 [hPTH(1-34)] gene by a gene fusion strategy was demonstrated. hPTH(1-34) was produced at the C terminus of the partner peptides involving amino acids 1 to 97, 1 to 117, or 1 to 139 of a modified Escherichia coli β-galactosidase by linker peptides containing oligohistidine of different lengths. The fusion proteins in the inclusion bodies were rendered soluble with urea and subjected to site-specific cleavage with the secretory type yeast Kex2 protease. Optimal expression and enzymatic processing were achieved in the fusion protein βG-117S4HPT, constructed from amino acids 1 to 117 of β-galactosidase and the linker of HHHHPGGSVKKR. The fusion protein accumulated more than 20% of the E. coli total protein. The hPTH(1-34) was purified up to 99.5% with a good yield of 0.5 g/liter of culture. The purified product was identified as intact hPTH(1-34) by amino acid analysis and N-terminal sequencing.  相似文献   

15.
A national survey was conducted to determine the prevalence of Escherichia coli O26, O103, O111, and O145 in feces of Scottish cattle. In total, 6,086 fecal pats from 338 farms were tested. The weighted mean percentages of farms on which shedding was detected were 23% for E. coli O26, 22% for E. coli O103, and 10% for E. coli O145. The weighted mean prevalences in fecal pats were 4.6% for E. coli O26, 2.7% for E. coli O103, and 0.7% for E. coli O145. No E. coli O111 was detected. Farms with cattle shedding E. coli serogroup O26, O103, or O145 were widely dispersed across Scotland and were identified most often in summer and autumn. However, on individual farms, fecal shedding of E. coli O26, O103, or O145 was frequently undetectable or the numbers of pats testing positive were small. For serogroup O26 or O103 there was clustering of positive pats within management groups, and the presence of an animal shedding one of these serogroups was a positive predictor for shedding by others, suggesting local transmission of infection. Carriage of vtx was rare in E. coli O103 and O145 isolates, but 49.0% of E. coli O26 isolates possessed vtx, invariably vtx1 alone or vtx1 and vtx2 together. The carriage of eae and ehxA genes was highly associated in all three serogroups. Among E. coli serogroup O26 isolates, 28.9% carried vtx, eae, and ehxA—a profile consistent with E. coli O26 strains known to cause human disease.  相似文献   

16.
Binepal G  Ranjan RK  Rajagopal K 《Gene》2012,493(1):155-160
The overlap forward-primer-walk polymerase chain reaction method was used to synthesize the human tumor necrosis factor α (hTNF) gene in Escherichia coli cells. Growth curves for hTNF and pET23d vector cultures exhibited slower doubling rates than cultures containing the pET23d vector alone. Cell cultures transformed with hTNF reached peak densities (0.4-0.6 OD600) 3 to 4 h post-induction, then decreased prior to growth recovery. This inhibition occurred in the BL21DE3 strain of E. coli, whereas no inhibition of growth and no expression of hTNF were observed in the JM109 strain of E. coli containing hTNF. Induced hTNF cultures hyperexpressed the hTNF-histidine fusion protein for the first 3 to 4 h of induction; subsequently, growth retardation was observed. Hyperexpression and continuous growth were observed in the extracellular expression system. Electron microscopy revealed that accumulation of hTNF inclusion bodies was apparent only in the intracellular expression system — no accumulation was observed with regard to the secretory system. The hTNF-pET23d vector was purified from cells expressing the fusion protein and from cells with recovered growth curves. Sequencing of the vector demonstrated the complete hTNF gene and T7 promoter in cells expressing the fusion protein and mutations of the T7 promoter site from recovered cells.  相似文献   

17.
N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3–0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a KD of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.  相似文献   

18.
A rapid empirical assay is presented for assessing the phenotypic stability of continuous cultures of recombinant bacteria containing transposed pdc and adh genes for ethanol production. The method measures spectrophotometrically the rate of colour formation when cells oxidize added ethanol to acetaldehyde in the presence of Schiff’s reagent. During chemostat cultures of the recombinant ethanologen Escherichia coli KO11 on 20 g/l glucose, assay activities were stable and high at ca 8 × 10−4 ΔOD540/(s.OD550), reflecting the high, stable ethanol yield (ca 95%). On 20 g/l and 50 g/l xylose, ethanol yields declined rapidly to about 60% and this was closely mirrored by the assay activities which fell to ca 1.5 ΔOD540/(s.OD550), only slightly higher than those measured for the parent strain. Typically taking only about an hour to perform, the assay provides a faster means of gauging the phenotypic stability of ethanol production than is possible by conventional methods.  相似文献   

19.
The identification of optimal genotypes that result in improved production of recombinant metabolites remains an engineering conundrum. In the present work, various strategies to reengineer central metabolism in Escherichia coli were explored for robust synthesis of flavanones, the common precursors of plant flavonoid secondary metabolites. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) pool through the coordinated overexpression of four acetyl-CoA carboxylase (ACC) subunits from Photorhabdus luminescens (PlACC) under a constitutive promoter resulted in an increase in flavanone production up to 576%. Exploration of macromolecule complexes to optimize metabolic efficiency demonstrated that auxiliary expression of PlACC with biotin ligase from the same species (BirAPl) further elevated flavanone synthesis up to 1,166%. However, the coexpression of PlACC with Escherichia coli BirA (BirAEc) caused a marked decrease in flavanone production. Activity improvement was reconstituted with the coexpression of PlACC with a chimeric BirA consisting of the N terminus of BirAEc and the C terminus of BirAPl. In another approach, high levels of flavanone synthesis were achieved through the amplification of acetate assimilation pathways combined with the overexpression of ACC. Overall, the metabolic engineering of central metabolic pathways described in the present work increased the production of pinocembrin, naringenin, and eriodictyol in 36 h up to 1,379%, 183%, and 373%, respectively, over production with the strains expressing only the flavonoid pathway, which corresponded to 429 mg/liter, 119 mg/liter, and 52 mg/liter, respectively.  相似文献   

20.
Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs) in recombinant bacterial expression systems. However, some of these efforts have been limited by product toxicity to host cells, product proteolysis, low expression levels, poor recovery yields, and sometimes an absence of posttranslational modifications required for biological activity. For the present work, we investigated the use of the baculoviral polyhedrin (Polh) protein as a novel fusion partner for the production of a model AMP (halocidin 18-amino-acid subunit; Hal18) in Escherichia coli. The useful solubility properties of Polh as a fusion partner facilitated the expression of the Polh-Hal18 fusion protein (~33.6 kDa) by forming insoluble inclusion bodies in E. coli which could easily be purified by inclusion body isolation and affinity purification using the fused hexahistidine tag. The recombinant Hal18 AMP (~2 kDa) could then be cleaved with hydroxylamine from the fusion protein and easily recovered by simple dialysis and centrifugation. This was facilitated by the fact that Polh was soluble during the alkaline cleavage reaction but became insoluble during dialysis at a neutral pH. Reverse-phase high-performance liquid chromatography was used to further purify the separated recombinant Hal18, giving a final yield of 30% with >90% purity. Importantly, recombinant and synthetic Hal18 peptides showed nearly identical antimicrobial activities against E. coli and Staphylococcus aureus, which were used as representative gram-negative and gram-positive bacteria, respectively. These results demonstrate that baculoviral Polh can provide an efficient and facile platform for the production or functional study of target AMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号