首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1 external envelope glycoprotein gp120 inhibits adenosine deaminase (ADA) binding to its cell surface receptor in lymphocytes, CD26, by a mechanism that does not require the gp120-CD4 interaction. To further characterize this mechanism, we studied ADA binding to murine clones stably expressing human CD26 and/or human CD4, and transiently expressing human CXCR4. In this heterologous model, we show that both recombinant gp120 and viral particles from the X4 HIV-1 isolate IIIB inhibited the binding of ADA to wild-type or catalytically inactive forms of CD26. In cells lacking human CXCR4 expression, this gp120-mediated inhibition of ADA binding to human CD26 was completely dependent on the expression of human CD4. In contrast, when cells were transfected with human CXCR4 the inhibitory effect of gp120 was significantly enhanced and was not blocked by anti-CD4 antibodies. These data suggest that the interaction of gp120 with CD4 or CXCR4 is required for efficient inhibition of ADA binding to CD26, although in the presence of CXCR4 the interaction of gp120 with CD4 may be dispensable.  相似文献   

2.
Because the binding of HIV-1 envelope to CD4 initiates a configurational change in glycoprotein 120 (gp120), enabling it to interact with fusion coreceptors, we investigated how this process interferes with the expression and function of CXC chemokine receptor 4 (CXCR4) in CD4+ T lymphocytes. A recombinant gp120 (MN), after preincubation with CD4+ T lymphocytes, significantly inhibited the binding and chemotaxis of the cells in response to the CXCR4 ligand stromal cell-derived factor-1alpha (SDF-1alpha), accompanied by a markedly reduced surface expression of CXCR4. gp120, but not SDF-1alpha, induced rapid tyrosine phosphorylation of src-like kinase p56lck in CD4+ T cells, whereas both gp120 and SDF-1alpha caused phosphorylation of the CXCR4. The tyrosine kinase inhibitor herbimycin A abolished the phosphorylation of p56lck and CXCR4 induced by gp120 in association with maintenance of normal expression of cell surface CXCR4 and a migratory response to SDF-1alpha. Thus, a CD4-associated signaling molecule(s) including p56lck is activated by gp120 and is required for the down-regulation of CXCR4.  相似文献   

3.
Chemokines and their receptors play a critical role in host immune surveillance and are important mediators of human immunodeficiency virus (HIV) pathogenesis and inflammatory response. The chemokine receptors CCR5 and CXCR4, which act as co-receptors along with CD4 for HIV docking and entry, are down-modulated by their respective ligands, MIP-1beta/SDF-1alpha or by the HIV envelope protein, gp120. We have studied the role of the proteasome pathway in the down-regulation of these receptors. Using the yeast and mammalian two-hybrid systems, we observed that the CCR5 receptor is constitutively associated with the zeta subunit of proteasome. Immunoprecipitation studies in CCR5 L1.2 cells revealed that this association was increased with MIP-1beta stimulation. The proteasome inhibitors, lactacystin and epoxomicin, attenuated MIP-1beta induced CCR5 down-modulation as detected by fluorescence-activated cell sorter analysis and confocal microscopy. The proteasome inhibitors also inhibited the SDF-1alpha and gp120 protein-induced down-modulation of the CXCR4 receptor in Jurkat cells. However, the inhibitors had no significant effect on the gp120-induced internalization of the CD4 receptor. These inhibitors also blocked cognate ligand-mediated chemotaxis but had no effect on SDF-1alpha-induced p44/42 MAP kinase or MIP-1beta-induced p38 kinase activities, thus indicating differential effects of the inhibitors on signaling mediated by these receptors. These results indicate that the CCR5 and CXCR4 receptor down-modulation mechanism and chemotaxis mediated by these receptors are dependent upon proteasome activity.  相似文献   

4.
The G protein-coupled receptor CXCR4 is a coreceptor, along with CD4, for the human immunodeficiency virus type 1 (HIV-1) and has been implicated in breast cancer metastasis. We studied the binding of the HIV-1 gp120 envelope glycoprotein (gp) to CXCR4 but found that the gp120s from CXCR4-using HIV-1 strains bound nonspecifically to several cell lines lacking human CXCR4 expression. Therefore, we constructed paramagnetic proteoliposomes (CXCR4-PMPLs) containing pure, native CXCR4. CXCR4-PMPLs specifically bound the natural ligand, SDF-1alpha, and the gp120s from CXCR4-using HIV-1 strains. Conformation-dependent anti-CXCR4 antibodies and the CXCR4 antagonist AMD3100 blocked HIV-1 gp120 binding to CXCR4-PMPLs. The gp120-CXCR4 interaction was blocked by anti-gp120 antibodies directed against the third variable (V3) loop and CD4-induced epitopes, structures that have also been implicated in the binding of gp120 to the other HIV-1 coreceptor, CCR5. Compared with the binding of R5 HIV-1 gp120s to CCR5, the gp120-CXCR4 interaction exhibited a lower affinity (K(d) = 200 nm) and was dependent upon prior CD4 binding, even at low temperature. Thus, although similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature.  相似文献   

5.
Mbemba E  Saffar L  Gattegno L 《FEBS letters》2002,514(2-3):209-213
CXCR4 is a coreceptor, along with CD4, for human immunodeficiency virus type 1 (HIV-1). Trimolecular complexes between HIV-1 glycoprotein (gp)120, CD4 and CXCR4 constitute a prerequisite for HIV entry. We studied whether CD4 is associated with CXCR4 on CD4+ CXCR4+ cells. Using the conformation-dependent anti-CXCR4 mAb 12G5, CD4 was coimmunoprecipitated with CXCR4 from the membrane of U937 cells which support HIV-1(LAI) efficient infection, and from that of peripheral blood lymphocytes (PBL). CD4 association with CXCR4 increased upon PBL coculture for 5 days with autologous monocytes, decreased upon treatment of the cells or the CD4-CXCR4 complex with either N-glycanase or stromal cell derived factor-1alpha (SDF-1alpha) and was abolished by incubation of the cells with both, N-glycanase and SDF-1alpha. This indicates that glycans are partly involved in CD4 association with CXCR4 and may partly explain the inhibitory effect of SDF-1alpha on HIV infection.  相似文献   

6.
The interaction of the chemokine stromal cell-derived factor 1 (SDF-1) with its receptor CXCR4 is vital for cell trafficking during development, is capable of inhibiting human immunodeficiency virus type 1 (HIV-1) utilization of CXCR4 as a coreceptor, and has been implicated in delaying disease progression to AIDS in vivo. Because of the importance of this chemokine-chemokine receptor pair to both development and disease, we investigated the molecular basis of the interaction between CXCR4 and its ligands SDF-1 and HIV-1 envelope. Using CXCR4 chimeras and mutants, we determined that SDF-1 requires the CXCR4 amino terminus for binding and activates downstream signaling pathways by interacting with the second extracellular loop of CXCR4. SDF-1-mediated activation of CXCR4 required the Asp-Arg-Tyr motif in the second intracellular loop of CXCR4, was pertussis toxin sensitive, and did not require the distal C-terminal tail of CXCR4. Several CXCR4 mutants that were not capable of binding SDF-1 or signaling still supported HIV-1 infection, indicating that the ability of CXCR4 to function as a coreceptor is independent of its ability to signal. Direct binding studies using the X4 gp120s HXB, BH8, and MN demonstrated the ability of HIV-1 gp120 to bind directly and specifically to the chemokine receptor CXCR4 in a CD4-dependent manner, using a conformationally complex structure on CXCR4. Several CXCR4 variants that did not support binding of soluble gp120 could still function as viral coreceptors, indicating that detectable binding of monomeric gp120 is not always predictive of coreceptor function.  相似文献   

7.
Activation of T-lymphocytes is an important component of inflammatory and infectious processes, including HIV infection. It is regulated via the actions of various cell-surface receptors, including CD4 and CXCR4. We examined the roles of CD4 and CXCR4 in the adhesive interaction of CD4+T-cells with the vascular endothelium. CD4+Jurkat cells were incubated in the presence or absence of anti-CD4 to stimulate CD4, or with SDF-1 alpha, a cognate ligand of CXCR4. Stimulation of CD4 or CXCR4 each significantly enhanced cell adhesion. We next stimulated the two receptors together, using gp120, a component of HIV. This enhanced cell adhesion was greater than stimulation of CD4 or CXCR4 individually. Western blotting revealed that stimulation of CXCR4 by SDF-1 alpha significantly increased the phosphorylation of ERK1/2 in Jurkat cells. Treatment with anti-CD4 also activated ERK1/2, although to a lesser extent. When the expression of CD4 was reduced by siRNA transfection, both CD4-dependent adhesion and MAPK activation were diminished. Furthermore, pre-treatment with fluvastatin, significantly attenuated observed Jurkat cell adhesion. These findings indicate novel mechanisms of CD4+ T-cells recruitment to activated endothelium via CD4 and CXCR4, which are modulated by statin.  相似文献   

8.
The chemokine receptor CXCR4 is the principal coreceptor for X4 strains of HIV-1. We show that gp120 is unable to induce interactions between CXCR4 and G-protein in T-cells, but antagonized the agonist effect of SDF-1alpha, the natural ligand for CXCR4. Gp120 had ten times lower affinity for CXCR4 than CD4, implying that a substantial role for cellular CD4 may be to facilitate binding of the viral envelope to CXCR4. Binding of gp120 to CXCR4 was neither regulated by guanine nucleotides, nor affected by divalent cations, was temperature independent and bound to a homogenous population of CXCR4, which is characteristic for an antagonist to a G-protein coupled receptor. In contrast, SDF-1alpha binds to two affinity states of CXCR4 in T-cell membranes, which are modulated by guanine nucleotides. Binding of SDF-1alpha to CXCR4 was highly temperature dependent. Thus, the interaction of CXCR4 with HIV-1 viral envelope and chemokine exhibits fundamental differences.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells is a multistep process initiated by envelope protein gp120 binding to cell surface CD4. The conformational changes induced by this interaction likely favor a second-step interaction between gp120 and a coreceptor such as CXCR4 or CCR5. Here, we report a spontaneous and stable CD4-independent entry phenotype for the HIV-1 NDK isolate. This mutant strain, which emerged from a population of chronically infected CD4-positive CEM cells, can replicate in CD4-negative human cell lines. The presence of CXCR4 alone renders cells susceptible to infection by the mutant NDK, and infection can be blocked by the CXCR4 natural ligand SDF-1. Furthermore, we have correlated the CD4-independent phenotype with seven mutations in the C2 and C3 regions and the V3 loop. We propose that the mutant gp120 spontaneously acquires a conformation allowing it to interact directly with CXCR4. This virus provides us with a powerful tool to study directly gp120-CXCR4 interactions.  相似文献   

10.
The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.  相似文献   

11.
CCR5 and CXC chemokine receptor 4 (CXCR4) are coreceptors for CD4 as defined by HIV-1 glycoprotein (gp) 120 binding. Pretreatment of T cells with gp120 results in modulation of both CCR5 and CXCR4 responsiveness, which is dependent upon p56(lck) enzymatic activity. The recent findings that pretreatment of T cells with a natural CD4 ligand, IL-16, could alter cellular responsiveness to macrophage-inflammatory protein-1ss (MIP-1ss) stimulation, prompted us to investigate whether IL-16 could also alter CXCR4 signaling. These studies demonstrate that IL-16/CD4 signaling in T lymphocytes also results in loss of stromal derived factor-1alpha (SDF-1alpha)/CXCR4-induced chemotaxis; however, unlike MIP-1ss/CCR5, the effects were not reciprocal. There was no effect on eotaxin/CCR3-induced chemotaxis. Desensitization of CXCR4 by IL-16 required at least 10-15 min pretreatment; no modulation of CXCR4 expression was observed, nor was SDF-1alpha binding altered. Using murine T cell hybridomas transfected to express native or mutated forms of CD4, it was determined that IL-16/CD4 induces a p56(lck)-dependent inhibitory signal for CXCR4, which is independent of its tyrosine catalytic activity. By contrast, IL-16/CD4 desensitization of MIP-1ss/CCR5 responses requires p56(lck) enzymatic activity. IL-16/CD4 inhibition of SDF-1alpha/CXCR4 signals requires the presence of the Src homology 3 domain of p56(lck) and most likely involves activation of phosphatidylinositol-3 kinase. These studies indicate the mechanism of CXCR4 receptor desensitization induced by a natural ligand for CD4, IL-16, is distinct from the inhibitory effects induced by either gp120 or IL-16 on CCR5.  相似文献   

12.
The chemokine stromal cell-derived factor 1 (SDF-1) is the natural ligand for CXC chemokine receptor 4 (CXCR4). SDF-1 inhibits infection of CD4+ cells by X4 (CXCR4-dependent) human immunodeficiency virus (HIV) strains. We previously showed that SDF-1 alpha interacts specifically with heparin or heparan sulfates (HSs). Herein, we delimited the boundaries of the HS-binding domain located in the first beta-strand of SDF-1 alpha as the critical residues. We also provide evidence that binding to cell surface heparan sulfate proteoglycans (HSPGs) determines the capacity of SDF-1 alpha to prevent the fusogenic activity of HIV-1 X4 isolates in leukocytes. Indeed, SDF-1 alpha mutants lacking the capacity to interact with HSPGs showed a substantially reduced capacity to prevent cell-to-cell fusion mediated by X4 HIV envelope glycoproteins. Moreover, the enzymatic removal of cell surface HS diminishes the HIV-inhibitory capacity of the chemokine to the levels shown by the HS-binding-disabled mutant counterparts. The mechanisms underlying the optimal HIV-inhibitory activity of SDF-1 alpha when attached to HSPGs were investigated. Combining fluorescence resonance energy transfer and laser confocal microscopy, we demonstrate the concomitant binding of SDF-1 alpha to CXCR4 and HSPGs at the cell membrane. Using FRET between a Texas Red-labeled SDF-1 alpha and an enhanced green fluorescent protein-tagged CXCR4, we show that binding of SDF-1 alpha to cell surface HSPGs modifies neither the kinetics of occupancy nor activation in real time of CXCR4 by the chemokine. Moreover, attachment to HSPGs does not modify the potency of the chemokine to promote internalization of CXCR4. Attachment to cellular HSPGs may co-operate in the optimal anti-HIV activity of SDF-1 alpha by increasing the local concentration of the chemokine in the surrounding environment of CXCR4, thus facilitating sustained occupancy and down-regulation of the HIV coreceptor.  相似文献   

13.

Background

HIV infection and/or the direct pathogenic effects of circulating HIV proteins impairs the physiological function of mesenchymal stem cells (MSCs), and contribute to the pathogenesis of age-related clinical comorbidities in people living with HIV. The SDF-1/CXCR4 pathway is vital for modulating MSC proliferation, migration and differentiation. HIV glycoprotein gp120 inhibits SDF-1 induced chemotaxis by downregulating the expression and function of CXCR4 in monocytes, B and T cells. The influence of gp120 on CXCR4 expression and migration in MSCs is unknown.

Methods

We investigated CXCR4 expression and SDF-1/CXCR4-mediated MSC migration in response to gp120, and its effect on downstream signaling pathways: focal adhesion kinase (FAK)/Paxillin and extracellular signal-regulated kinase (ERK).

Results

Gp120 upregulated MSC CXCR4 expression. This potentiated the effects of SDF-1 in inducing chemotaxis; FAK/Paxillin and ERK pathways were over-activated, thereby facilitating actin stress fiber reorganization. CXCR4 blockage or depletion abrogated the observed effects.

Conclusion

Gp120 from both T- and M- tropic HIV strains upregulated CXCR4 expression in MSCs, resulting in enhanced MSC chemotaxis in response to SDF-1.

General significance

HIV infection and its proteins are known to disrupt physiological differentiation of MSC; increased gp120-driven migration amplifies the total MSC population destined for ineffective and inappropriate differentiation, thus contributing to the pathogenesis of HIV-related comorbidities. Additionally, given that MSCs are permissive to HIV infection, initial cellular priming by gp120 results in increased expression of CXCR4 and could lead to co-receptor switching and cell tropism changes in chronic HIV infection and may have implications against CCR5-knockout based HIV cure strategies.  相似文献   

14.
We analyzed the modulation of human B cell chemotaxis by the gp120 proteins of various HIV-1 strains. X4 and X4/R5 gp120 inhibited B cell chemotaxis toward CXCL12, CCL20, and CCL21 by 40-50%, whereas R5 gp120 decreased inhibition by 20%. This gp120-induced inhibition was strictly dependent on CXCR4 or CCR5 and lipid rafts but not on CD4 or V(H)3-expressing BCR. Inhibition did not impair the expression or ligand-induced internalization of CCR6 and CCR7. Our data suggest that gp120/CXCR4 and gp120/CCR5 interactions lead to the cross-desensitization of CCR6 and CCR7 because gp120 does not bind CCR6 and CCR7. Unlike CXCL12, gp120 did not induce the activation of phospholipase Cbeta3 and PI3K downstream from CXCR4, whereas p38 MAPK activation was observed. Similar results were obtained if gp120-treated cells were triggered by CCL21 and CCL20. Our results are consistent with a blockade restricted to signaling pathways using phosphatidylinositol-4,5-bisphosphate as a substrate. X4 and X4/R5 gp120 induced the cleavage of CD62 ligand by a mechanism dependent on matrix metalloproteinase 1 and 3, CD4, CXCR4, Galpha(i), and p38 MAPK, whereas R5 gp120 did not. X4 and X4/R5 gp120 also induced the relocalization of cytoplasmic CD95 to the membrane and a 23% increase in CD95-mediated apoptosis. No such effects were observed with R5 gp120. The gp120-induced decrease in B cell chemotaxis and CD62 ligand expression, and increase in CD95-mediated B cell apoptosis probably have major deleterious effects on B cell responsiveness during HIV infection and in vaccination trials.  相似文献   

15.
Hematopoietic progenitor cells (HPCs) can be mobilized from bone marrow (BM) to the blood by G-CSF. In this process, CXCR4 and CD26 play critical roles. Sulfated colominic acid (SCA) inhibits HIV entry, the step which requires CXCR4 and CD26 as co-receptors. Thus, we hypothesized that SCA would modulate HPC trafficking. We first found that SCA mobilized HPCs rapidly via CD26-independent mechanism. In vitro progenitor migration toward chemokine SDF-1 was significantly enhanced by SCA, and it was completely abrogated by CXCR4 inhibition. This likely originated from the inhibition of CXCR4 down-regulation after interaction with SDF-1. Serum SDF-1 level increased after SCA injection, whereas no change was observed in BM and bone. These results suggest that SCA induces HPC mobilization by modulating CXCR4 function resulting in attraction toward increased SDF-1 in the circulation. Furthermore, we confirmed an additive effect with G-CSF in mobilization. SCA may provide an efficacy in clinical mobilization.  相似文献   

16.
To evaluate conserved structures of the surface gp120 subunit (SU) of the human immunodeficiency virus type 1 (HIV-1) envelope in gp120-cell interactions, we designed and produced an HIV-1 IIIB (HXB2R) gp120 carrying a deletion of amino acids E61 to S85. This sequence corresponds to a highly conserved predicted amphipathic alpha-helical structure located in the gp120 C1 region. The resultant soluble mutant with a deleted alpha helix 1 (gp120 ΔαHX1) exhibited a strong interaction with CXCR4, although CD4 binding was undetectable. The former interaction was specific since it inhibited the binding of the anti-CXCR4 monoclonal antibody (12G5), as well as SDF1α, the natural ligand of CXCR4. Additionally, the mutant gp120 was able to bind to CXCR4+/CD4 cells but not to CXCR4/CD4 cells. Although efficiently expressed on cell surface, HIV envelope harboring the deleted gp120 ΔαHX1 associated with wild-type transmembrane gp41 was unable to induce cell-to-cell fusion with HeLa CD4+ cells. Nevertheless, the soluble gp120 ΔαHX1 efficiently inhibited a single round of HIV-1 LAI infection in HeLa P4 cells, with a 50% inhibitory concentration of 100 nM. Our data demonstrate that interaction with the CXCR4 coreceptor was maintained in a SUgp120 HIV envelope lacking αHX1. Moreover, in the absence of CD4 binding, the interaction of gp120 ΔαHX1 with CXCR4 was sufficient to inhibit HIV-1 infection.  相似文献   

17.
To infect target cells, the human immunodeficiency virus (HIV) type I (HIV-1) must engage not only the well-known CD4 molecule, but it also requires one of several recently described coreceptors. In particular, the CXCR4 (LESTR/fusin) receptor allows fusion and entry of T-tropic strains of HIV, whereas CCR5 is the major coreceptor used by primary HIV-1 strains that infect macrophages and CD4(+) T-helper cells (M-tropic viruses). In addition, the alpha chemokine SDF1alpha and the beta chemokines MIP1alpha, MIP1beta, and RANTES, natural ligands of CXCR4 and CCR5, respectively, are potent soluble inhibitors of HIV infection by blocking the binding between the viral envelope glycoprotein gp120 and the coreceptors. Approximately two-thirds of individuals with acquired immunodeficiency syndrome (AIDS) show neurologic complications, which are referred to a syndrome called AIDS dementia complex or HIV-1-associated cognitive/motor complex. The HIV-1 coat glycoprotein gp120 has been proposed as the major etiologic agent for neuronal damage, mediating both direct and indirect effects on the CNS. Furthermore, recent findings showing the presence of chemokine receptors on the surface of different cell types resident in the CNS raise the possibility that the association of gp120 with these receptors may contribute to the pathogenesis of neurological dysfunction. Here, we address the possible role of alpha and beta chemokines in inhibiting gp120-mediated neurotoxicity using the human neuroblastoma CHP100 cell line as an experimental model. We have previously shown that, in CHP100 cells, picomolar concentrations of gp120 produce a significant increase in cell death, which seems to proceed through a Ca(2+) - and NMDA receptor-dependent cascade. In this study, we gained insight into the mechanism(s) of neurotoxicity elicited by the viral glycoprotein. We found that CHP100 cells constitutively express both CXCR4 and CCR5 receptors and that stimulation with phorbol 12-myristate 13-acetate down-regulates their expression, thus preventing gp120-induced cell death. Furthermore, all the natural ligands of these receptors exerted protective effects against gp120-mediated neuronal damage, although with different efficiencies. These findings, together with our previous reports, suggest that the neuronal injury observed in HIV-1 infection could be due to direct (or indirect) interactions between the viral protein gp120 and chemokine and/or NMDA receptors.  相似文献   

18.
Nef is a viral regulatory protein of the human immunodeficiency virus (HIV) that has been shown to contribute to disease progression. Among its putative effects on T cell functions are the down-regulation of CD4 and major histocompatibility class I surface molecules. These effects occur in part via Nef interactions with intracellular signaling molecules. We sought to better characterize the effects of HIV Nef on T cell function by examining chemotaxis in response to stromal cell-derived factor-1alpha (SDF-1alpha) as well as CXCR4 signaling molecules. Here, we report the novel observation that HIV Nef inhibited chemotaxis in response to SDF-1alpha in both Jurkat T cells and primary peripheral CD4+ T lymphocytes. Our data indicate that HIV Nef altered critical downstream molecules in the CXCR4 pathway, including focal adhesion kinases. These findings suggest that HIV Nef may blunt the T cell response to chemokines. Because T lymphocyte migration is an integral component of host defense, HIV Nef may thereby contribute to the pathogenesis of AIDS.  相似文献   

19.
Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide dC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While dC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1alpha to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of dC13 implies additional mode(s) of action. These results suggest that dC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.  相似文献   

20.
Apoptosis of CD4(+) T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4(+) T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4(+) T-cell depletion in AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号