首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly sensitive and specific PCR-based method of monitoring 16S rRNA genes of Pseudomonas stutzeri was developed for searching P. stutzeri DNA in environmental samples. This monitoring was combined with a reliable and sensitive method for isolating P. stutzeri colony formers from soil and sediment, depending on their utilization of ethylene glycol, starch, and maltose. With these techniques, P. stutzeri populations (n = 2 to 170) were obtained from five of six sites giving positive PCR signals (including three marine sediment and two soil samples). The phylogenetic positions of isolates from the five sites, based on their 16S ribosomal DNA sequences, indicated that the environmental isolates were affiliated with different genomovars of P. stutzeri. Using the broad-host-range plasmid pNS1 with kanamycin and gentamicin resistance determinants as the transforming DNA, naturally transformable strains were identified among the isolates from all sites. For one population from soil, the genetic relationship of the 120 members was determined by randomly amplified polymorphic DNA-PCR with three PCR primers. Among the population members which are taxonomically closely related as determined by 16S sequence comparisons of group representatives, a rather high genetic diversity and a characteristic clustering into subgroups were found. Remarkably, within the population, nontransformability and different levels of transformability (a frequency between about 10(-9) and 10(-4) per cell) were often associated with distinct genetic subgroups. It is concluded that transformability is widespread among environmental P. stutzeri strains and that its specific level is a heritable trait that may vary strongly within a local population.  相似文献   

2.
The genetic diversity and relationships within the genus Prevotella were studied by analyzing twenty-five strains by multilocus enzyme electrophoresis (MLEE) at nine metabolic enzyme loci and DNA-DNA hybridization. MLEE revealed a high genetic diversity with 25 electrophoretic types (ETs) for the 25 strains studied, a mean number of alleles per enzyme locus of 6.8 and a mean genetic diversity per locus of 0.786. The index of association described by Maynard Smith et al. (1993) revealed a clonal structure within the genus Prevotella. A dendrogram generated by cluster analysis of a matrix of ETs showed that species like P. bivia, P. buccae, P. oris, P. oralis, P. nigrescens, and P. denticola form clusters that are consistent with DNA homologies. However, strains identified as P. melaninogenica or P. loescheii by DNA-DNA hybridization did not constitute distinct subpopulations in MLEE. MLEE analysis demonstrated its high power in differentiating closely related strains. It provides an alternative to 16S rRNA analysis for the study of phylogenetic relationships within the genus Prevotella, especially for differentiating strains with high DNA homology or high rRNA homology.  相似文献   

3.
The genomic diversity among photosynthetic rhizobia from northeast Argentina was assessed. Forty six isolates obtained from naturally occurring stem and root nodules of Aeschynomene rudis plants were analyzed by three molecular typing methods with different levels of taxonomic resolution: repetitive sequence-based PCR (rep-PCR) genomic fingerprinting with BOX and REP primers, amplified 16S rDNA restriction analysis (ARDRA), and 16S-23S rDNA intergenic spacer-restriction fragment length polymorphism (IGS-RFLP) analysis. The in vivo absorption spectra of membranes of strains were similar in the near infrared region with peaks at 870 and 800 nm revealing the presence of light harvesting complex I, bacteriochlorophyll-binding polypeptides (LHI-Bchl complex). After extraction with acetone-methanol the spectra differed in the visible part displaying peaks belonging to canthaxanthin or spirilloxanthin as the main carotenoid complement. The genotypic characterization by rep-PCR revealed a high level of genomic diversity among the isolates and almost all the photosynthetic ones have identical ARDRA patterns and fell into one cluster different from Bradyrhizobium japonicum and Bradyrhizobium elkanii. In the combined analysis of ARDRA and rep-PCR fingerprints, 7 clusters were found including most of the isolates. Five of those contained only photosynthetic isolates; all canthaxanthin-containing strains grouped in one cluster, most of the other photosynthetic isolates were grouped in a second large cluster, while the remaining three clusters contained a few strains. The other two clusters comprising reference strains of B. japonicum and B. elkanii, respectively. The IGS-RFLP analysis produced similar clustering for almost all the strains. The 16S rRNA gene sequence of one representative isolate was determined and the DNA sequence analysis confirmed the position of photosynthetic rhizobia in a distinct phylogenetic group within the Bradyrhizobium rDNA cluster.  相似文献   

4.
Genetic diversity of indigenous Bradyrhizobium japonicum population in Croatia was studied by using different PCR-based fingerprinting methods. Characteristic DNA profiles for 20 B. japonicum field isolates and two reference strains were obtained using random primers (RAPD) and two sets of repetitive primers (REP- and ERIC-PCR). In comparison with the REP, the ERIC primer set generates fingerprints of lower complexity, but still several strain-specific bands were detected. Different B. japonicum isolates could be more efficiently distinguished by using combined results from REP- and ERIC-PCR. The most polymorphic bands were observed after amplification with four different RAPD primers. Both methods, RAPD and rep-PCR, resulted in identical grouping of the strains. Cluster analysis, irrespective of the fingerprinting method used, revealed that all the isolates could be divided into three major groups. Within the major groups, the degree of relative similarity between B. japonicum isolates was dependent upon the method used. Our results indicate that both RAPD and rep-PCR fingerprinting can effectively distinguish different B. japonicum strains. RAPD fingerprinting proved to be slightly more discriminatory than rep-PCR.  相似文献   

5.
Eighteen Trypanosoma cruzi strains isolated from naturally infected triatomines were studied genetically. The majority of the strains were from Triatoma brasiliensis, the principal vector of Chagas disease in the northeast of Brazil. Multilocus enzyme electrophoresis (MLEE) and randomly amplified polymorphic DNA (RAPD) analyses were used to investigate the genotypic diversity and the spread of the T. cruzi genotypes in different environments. MLEE clearly distinguished two distinct isoenzyme profiles, and RAPD analysis revealed 10 different genotypes circulating in rural areas. The strains could be typed as isoenzyme variants of the T. cruzi principal zymodeme Z1 (T. cruzi I). An effective program of epidemiological vigilance is required to prevent the spread of T. cruzi I strains into human dwellings.  相似文献   

6.
Escherichia coli is an important member of the gastrointestinal tract of humans and warm-blooded animals (primary habitat). In the external environment outside the host (secondary habitat), it is often considered to be only a transient member of the microbiota found in water and soil, although recent evidence suggests that some strains can persist in temperate soils and freshwater beaches. Here we quantified the population genetic structure of E. coli from a longitudinal collection of environmental strains isolated from six freshwater beaches along Lake Huron and the St. Clair River in Michigan. Multilocus enzyme electrophoresis (MLEE) and multilocus sequence typing (MLST) revealed extensive genetic diversity among 185 E. coli isolates with an average of 40 alleles per locus. Despite evidence for extensive recombination generating new alleles and genotypic diversity, several genotypes marked by distinct MLEE and MLST profiles were repeatedly recovered from separate sites at different times. A PCR-based phylogrouping technique showed that the persistent, naturalized E. coli belonged to the B1 group. These results support the hypothesis that persistent genotypes have an adaptive advantage in the secondary habitat outside the host.  相似文献   

7.
Genetic diversity of indigenous Bradyrhizobium japonicum population in Croatia was studied by using different PCR-based fingerprinting methods. Characteristic DNA profiles for 20 B. japonicum field isolates and two reference strains were obtained using random primers (RAPD) and two sets of repetitive primers (REP- and ERIC-PCR). In comparison with the REP, the ERIC primer set generates fingerprints of lower complexity, but still several strain-specific bands were detected. Different B. japonicum isolates could be more efficiently distinguished by using combined results from REP- and ERIC-PCR. The most polymorphic bands were observed after amplification with four different RAPD primers. Both methods, RAPD and rep-PCR, resulted in identical grouping of the strains. Cluster analysis, irrespective of the fingerprinting method used, revealed that all the isolates could be divided into three major groups. Within the major groups, the degree of relative similarity between B. japonicum isolates was dependent upon the method used. Our results indicate that both RAPD and rep-PCR fingerprinting can effectively distinguish different B. japonicum strains. RAPD fingerprinting proved to be slightly more discriminatory than rep-PCR.  相似文献   

8.
The Escherichia coli (E. coli) reference collection, ECOR, consists of 72 strains that are representative of the genotypic diversity, as indexed by multilocus enzyme electrophoresis (MLEE), in the species as a whole. MLEE revealed 4 main phylogenetic groups designated A, B1, B2 and D. We present a study of the relationship between the ECOR strains as determined by polymorphisms in seven variable-number of tandem repeats (VNTR) loci. Seven tandem repeats that were present in more than one of the fully sequenced E. coli strains were selected, and primers were constructed in order to amplify the targets in all species where the loci were present. The combined result for all VNTR loci was adapted as a multiple-locus variable-number tandem repeats analysis (MLVA) and showed that the ECOR collection was divided into 63 distinct genotypes. The ECOR phylogenetic groups defined by MLEE were not well conserved by MLVA. A set of 61 pathogenic isolates of both E. coli and Shigella spp. was then tested with the same set of VNTR loci, and revealed 54 distinct genotypes. In addition, the MLVA method was used to genotype isolates from patients and suspected sources in a recent outbreak of E. coli O103 in Norway. The pathogenic E. coli isolates contained the diarrhea causing categories EIEC, EAEC, STEC, ETEC and EPEC. Shigella isolates were of species S. flexneri, S. boydii, S. sonnei and S. dysenteriae. The MLVA method rapidly genotyped all isolates in the study at a Simpson's index of diversity of D=0.98.  相似文献   

9.
Genetic diversity and genetic relationships among 42 Pseudomonas stutzeri strains belonging to several genomovars and isolated from different sources were investigated in an examination of 20 metabolic enzymes by multilocus enzyme electrophoresis analysis. Forty-two distinct allele profiles were identified, indicating that all multilocus genotypes were represented by a single strain. All 20 loci were exceptionally polymorphic, with an average of 15.9 alleles per locus. To the best of our knowledge, this P. stutzeri sample exhibited the highest mean genetic diversity (H = 0.876) found to date in all bacterial species studied by multilocus enzyme electrophoresis. A high frequency of occurrence of null alleles was identified. The index of association (I(A)) for the P. stutzeri strains analyzed was 1.10. The I(A) values were always significantly different from zero for all subgroups studied, including clinical and environmental isolates and strains classified as genomovar 1. These results suggest that the population structure of P. stutzeri is strongly clonal, indicating that there is no significant level of assortative recombination that might destroy linkage disequilibrium.  相似文献   

10.
Forty-two strains representing the eight recognized nitrogen-fixing Paenibacillus species and 12 non-identified strains were examined by restriction fragment length polymorphism (RFLP) analysis of part of 16S and 23S rRNA genes amplified by polymerase chain reaction (PCR). Eleven different 16S rDNA genotypes were obtained from the combined data of RFLP analysis with four endonucleases and they were in agreement with the established taxonomic classification. Only one group of unclassified strains (Group I) was assigned in a separate genotype, suggesting they belong to a new species. Using the 23S PCR-RFLP method only six genotypes were detected, showing that this method is less discriminative than the 16S PCR-RFLP. Using the multilocus enzyme electrophoresis (MLEE) assay, the 48 strains tested could be classified into 35 zymovars. The seven enzymatic loci tested were polymorphic and the different profiles obtained among strains allowed the grouping of strains into 10 clusters. The PCR-RFLP methods together with the MLEE assay provide a rapid tool for the characterization and the establishment of the taxonomic position of isolates belonging to this nitrogen-fixing group, which shows a great potentiality in promoting plant growth.  相似文献   

11.
The rep-PCR fingerprinting method, with the support of ERIC and REP primers, was used to analyse the genomic diversity of 93 E. coli strains isolated from lake water samples drawn at two different depths. The applied UPGMA for DNA analysis did not reveale any genomic similarities between the 48 E. coli strains derived from the subsurface-zone water and the 43 of the bottom-zone water. The considerable genomic diversity of the E. coli of the surface zone was expressed as a dendrogram in the form of 8 similarity groups comprising strains isolated from samples drawn over one month. The bottom-zone strains, which display a lesser degree of genomic diversity (5 similarity groups), showed distinct common features in their DNA fingerprints. In the similarity dendrogram for the bottom-zone, strains derived in different months of sampling were segregated into the same similarity groups. Applying REP primers in rep-PCR generates more complex fingerprints increasing the discriminatory power of the analysis, whereas the ERIC primer generates less complex fingerprint patterns, and is thus clearer to interpret.  相似文献   

12.
The diversity among a set of bacterial strains that have the capacity to degrade total petroleum hydrocarbons (TPH) in soil contaminated with oily sludge (hazardous hydrocarbon waste from oil refineries) was determined. TPH is composed of alkane, aromatics, nitrogen-, sulfur-, and oxygen-containing compound, and asphaltene fractions of crude oil. The 150 bacterial isolates which could degrade TPH were isolated from soil samples obtained from diverse geoclimatic regions of India. All the isolates were biochemically characterized and identified with a Biolog microbial identification system and by 16S rDNA sequencing. Pseudomonas citronellolis predominated among the 150 isolates obtained from six different geographically diverse samplings. Of the isolates, 29 strains of P. citronellolis were selected for evaluating their genetic diversity. This was performed by molecular typing with repetitive sequence (Rep)-based PCR with primer sets ERIC (enterobacterial repetitive intergenic consensus), REP (repetitive extragenic palindromes), and BOXAIR and PCR-based ribotyping. Strain-specific and unique genotypic fingerprints were distinguished by these molecular typing strategies. The 29 strains of P. citronellolis were separated into 12 distinguishable genotypic groups by Rep-PCR and into seven genomic patterns by PCR-based ribotyping. The genetic diversity of the strains was related to the different geoclimatic isolation sites, type of oily sludge, and age of contamination of the sites. These results indicate that a combination of Rep-PCR fingerprinting and PCR-based ribotyping can be used as a high-resolution genomic fingerprinting method for elucidating intraspecies diversity among strains of P. citronellolis.  相似文献   

13.
The RAPD (random amplified polymorphic DNA) fingerprinting method, which utilizes low stringency PCR amplification with single primers of arbitrary sequence to generate strain-specific arrays of anonymous DNA fragments, was calibrated relative to the widely used, protein-based multilocus enzyme electrophoretic (MLEE) typing method. RAPD fingerprinting was carried out on five isolates from each of 15 major groups of Escherichia coli strains that cause diarrheal disease worldwide (75 isolates in all). Each group consisted of isolates that were not distinguishable from one another by MLEE typing using 20 diagnostic enzyme markers. In our RAPD tests, three or more distinct subgroups in each MLEE group were distinguished with each of five primers, and 74 of the 75 isolates were distinguished when data obtained with five primers were combined. Thus, RAPD typing is far more sensitive than MLEE typing for discriminating among related strains of a species. Despite their different sensitivities, the same general relationships among strains were inferred from MLEE and RAPD data. Thus, our results recommend use of the RAPD method for studies of bacterial population genetic structure and evolution, as well as for epidemiology.  相似文献   

14.
The diversity among a set of bacterial strains that have the capacity to degrade total petroleum hydrocarbons (TPH) in soil contaminated with oily sludge (hazardous hydrocarbon waste from oil refineries) was determined. TPH is composed of alkane, aromatics, nitrogen-, sulfur-, and oxygen-containing compound, and asphaltene fractions of crude oil. The 150 bacterial isolates which could degrade TPH were isolated from soil samples obtained from diverse geoclimatic regions of India. All the isolates were biochemically characterized and identified with a Biolog microbial identification system and by 16S rDNA sequencing. Pseudomonas citronellolis predominated among the 150 isolates obtained from six different geographically diverse samplings. Of the isolates, 29 strains of P. citronellolis were selected for evaluating their genetic diversity. This was performed by molecular typing with repetitive sequence (Rep)-based PCR with primer sets ERIC (enterobacterial repetitive intergenic consensus), REP (repetitive extragenic palindromes), and BOXAIR and PCR-based ribotyping. Strain-specific and unique genotypic fingerprints were distinguished by these molecular typing strategies. The 29 strains of P. citronellolis were separated into 12 distinguishable genotypic groups by Rep-PCR and into seven genomic patterns by PCR-based ribotyping. The genetic diversity of the strains was related to the different geoclimatic isolation sites, type of oily sludge, and age of contamination of the sites. These results indicate that a combination of Rep-PCR fingerprinting and PCR-based ribotyping can be used as a high-resolution genomic fingerprinting method for elucidating intraspecies diversity among strains of P. citronellolis.  相似文献   

15.
Random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers were used to evaluate the genetic diversity among 23 elite Lentinula edodes strains in China. A total of 138, 77 and 144 bands were detected by 16 RAPD primers, 5 ISSR primers and 23 SRAP primer combinations, among which 58.8%, 73.5% and 56.3% was polymorphic, respectively. By UPGMA clustering, a dendrogram was constructed based on each analysis. The three dendrograms showed that 23 L. edodes strains were clustered into three or four groups. The grouping exhibited similar structure and was generally consistent with their pedigrees. Twenty-three L. edodes strains shared great similarity indicated that the low level of genetic diversity of L. edodes strains and their relationship between each other. The important source of breeding material, such as wild and exotic types, must be introduced in order to broaden genetic base and decreases genetic vulnerability of L. edodes.  相似文献   

16.
We analyzed restriction fragment length polymorphism (RFLP) of 16S-23S rDNA intergenic spacer region (ISR) of Aeromonas species. A total of 69 isolates belonging to 18 DNA hybridization groups (HG; equivalent of genomic species) were used in this study. ISRs were amplified by PCR and the products were digested with four restriction endonucleases: Hin6I, Csp6I, TaqI, and TasI. The RFLP patterns obtained after digesting by particular enzymes revealed ISR polymorphism of isolates allocated to individual genomic species. The combined Hin6I, Csp6I, TaqI, and TasI restriction profiles were examined by Dice coefficient (SD) and unweighted pair group method of clustering (UPGMA). The isolates were allocated into 15 groups, three strains were unclustered. The strains belonging to the following genomic species: A. hydrophila, A. bestiarum, A. salmonicida, A. caviae, A. media, A. schubertii, A. allosaccharophila, A. popoffii, and A. culicicola formed distinct clusters. Strains belonging to HG 6, HG 7, HG 11, and HG 16 revealed similar combined RFLP patterns and constituted one group. Similarly, the strains of A. jandaei (HG 9) and the type strain of A. trota were allocated into one cluster. Two isolates of HG 14 formed distinct cluster. We noticed a genetic diversity among A. veronii isolates, the strains were clustered in two groups. Our study showed that combined ISR-RFLP analysis may be used for identification of some species of Aeromonas.  相似文献   

17.
The present study was conducted to identify and characterize the thermophilic bacteria isolated from various hot springs in Turkey by using phenotypic and genotypic methods including fatty acid methyl ester and rep-PCR profilings, and 16S rRNA sequencing. The data of fatty acid analysis showed the presence of 17 different fatty acids in 15 bacterial strains examined in this study. Six fatty acids, 15:0 iso, 15:0 anteiso, 16:0, 16:0 iso, 17:0 iso, and 17:0 anteiso, were present in all strains. The bacterial strains were classified into three phenotypic groups based on fatty acid profiles which were confirmed by genotypic methods such as 16S rRNA sequence analysis and rep-PCR genomic fingerprint profiles. After evaluating several primer sets targeting the repetitive DNA elements of REP, ERIC, BOX and (GTG)5, the (GTG)5 and BOXA1R primers were found to be the most reliable technique for identification and taxonomic characterization of thermophilic bacteria in the genera of Geobacillus, Anoxybacillus and Bacillus spp. Therefore, rep-PCR fingerprinting using the (GTG)5 and BOXA1R primers can be considered as a promising genotypic tool for the identification and characterization of thermophilic bacteria from species to strain level.  相似文献   

18.
A combination of cultivation-based methods with a molecular biological approach was used to investigate whether planktonic bacteria with identical 16S rRNA gene sequences can represent distinct eco- and genotypes. A set of 11 strains of Brevundimonas alba were isolated from a bacterial freshwater community by conventional plating or by using a liquid most-probable-number (MPN) dilution series. These strains had identical 16S rRNA gene sequences and represented the dominant phylotype in the plateable fraction, as well as in the highest positive dilutions of the MPN series. However, internally transcribed spacer and enterobacterial repetitive intergenic consensus PCR fingerprinting analyses, as well as DNA-DNA hybridization analyses, revealed great genetic diversity among the 11 strains. Each strain utilized a specific combination of 59 carbon substrates, and the niche overlap indices were low, suggesting that each strain occupied a different ecological niche. In dialysis cultures incubated in situ, each strain had a different growth rate and cell yield. We thus demonstrated that the B. alba strains represent distinct populations with genetically determined adaptations and probably occupy different ecological niches. Our results have implications for assessment of the diversity and biogeography of bacteria and increase the perception of natural diversity beyond the level of 16S rRNA gene sequences.  相似文献   

19.
Class 1 integrons have strongly influenced the evolution of multiple antibiotic resistance. Diverse integrons have recently been detected directly in a range of natural environments. In order to characterize the properties of these environmental integrons, we sought to isolate organisms containing integrons from soils, which resulted in the isolation of Pseudomonas stutzeri strain Q. Further isolation efforts targeted at this species resulted in recovery of two other strains (P and BAM). 16S rRNA sequences and chromosome mapping showed that these three strains are very closely related clonal variants in a single genomovar of P. stutzeri. Only strains Q and BAM were found to contain an integron and an associated gene cassette array. The intI and attI components of these strains showed 99 and 90% identity, respectively. The structure of these integrons and their associated gene cassettes was similar to that reported previously for other integron classes. The two integrons contained nonoverlapping sets of cassette-associated genes. In contrast, many of the cassette-associated recombination sites in the two integrons were similar and were considered to constitute a distinct subfamily consisting of 59-base element (59-be) recombination sites (the Pseudomonas subfamily). The recombination activity of P. stutzeri integron components was tested in cointegrate assays. IntIPstQ was shown to catalyze site-specific recombination between its cognate attI site and 59-be sites from antibiotic resistance gene cassettes. While IntIPstQ did not efficiently mediate recombination between members of the Pseudomonas 59-be subfamily and other 59-be types, the former sites were functional when they were tested with IntI1. We concluded that integrons present in P. stutzeri possess recombination activity and represent a hot spot for genomic diversity in this species.  相似文献   

20.
The typing of C. albicans by MLEE (multilocus enzyme electrophoresis) is dependent on the interpretation of enzyme electrophoretic patterns, and the study of the epidemiological relationships of these yeasts can be conducted by cluster analysis. Therefore, the aims of the present study were to first determine the discriminatory power of genetic interpretation (deduction of the allelic composition of diploid organisms) and numerical interpretation (mere determination of the presence and absence of bands) of MLEE patterns, and then to determine the concordance (Pearson product-moment correlation coefficient) and similarity (Jaccard similarity coefficient) of the groups of strains generated by three cluster analysis models, and the discriminatory power of such models as well [model A: genetic interpretation, genetic distance matrix of Nei (d(ij)) and UPGMA dendrogram; model B: genetic interpretation, Dice similarity matrix (S(D1)) and UPGMA dendrogram; model C: numerical interpretation, Dice similarity matrix (S(D2)) and UPGMA dendrogram]. MLEE was found to be a powerful and reliable tool for the typing of C. albicans due to its high discriminatory power (>0.9). Discriminatory power indicated that numerical interpretation is a method capable of discriminating a greater number of strains (47 versus 43 subtypes), but also pointed to model B as a method capable of providing a greater number of groups, suggesting its use for the typing of C. albicans by MLEE and cluster analysis. Very good agreement was only observed between the elements of the matrices S(D1) and S(D2), but a large majority of the groups generated in the three UPGMA dendrograms showed similarity S(J) between 4.8% and 75%, suggesting disparities in the conclusions obtained by the cluster assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号