首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Splenic NK1.1+CD4+ T cells that express intermediate levels of TCR alpha beta molecules (TCRint) and the DX5 Ag (believed to identify an equivalent population in NK1.1 allelic negative mice) possess the ability to rapidly produce high quantities of immunomodulatory cytokines, notably IL-4 and IFN-gamma, upon primary TCR activation in vivo. Indeed, only T cells expressing the NK1.1 Ag appear to be capable of this function. In this study, we demonstrate that splenic NK1.1-negative TCRintCD4+ T cells, identified on the basis of Fc gamma R expression, exist in naive NK1.1 allelic positive (C57BL/6) and negative (C3H/HeN) mice with the capacity to produce large amounts of IL-4 and IFN-gamma after only 8 h of primary CD3 stimulation in vitro. Furthermore, a comparison of the amounts of early cytokines produced by Fc gamma R+CD4+TCRint T cells with NK1. 1+CD4+ or DX5+CD4+TCRint T cells, simultaneously isolated from C57BL/6 or C3H/HeN mice, revealed strain and population differences. Thus, Fc gamma R defines another subpopulation of splenic CD4+TCRint cells that can rapidly produce large concentrations of immunomodulatory cytokines, suggesting that CD4+TCRint T cells themselves may represent a unique family of immunoregulatory CD4+ T cells whose members include Fc gamma R+CD4+ and NK1.1/DX5+CD4+ T cells.  相似文献   

2.
A novel thymocyte subpopulation expressing an unusual TCR repertoire was identified by high surface expression of the Ly-6C Ag. Ly-6C+ thymocytes were distributed among all four CD4/CD8 thymocyte subsets, and represented a readily identifiable subpopulation within each one. Ly-6C+ thymocytes express TCR-alpha beta, arise late in ontogeny, and appear in the CD4/CD8 developmental pathway after birth in a sequence that resembles that followed by conventional Ly-6C- cells during fetal ontogeny. Most interestingly, adult Ly-6C+ thymocytes express an unusual TCR-V beta repertoire that is identical to that expressed by CD4-CD8-TCR-alpha beta+ thymocytes in its overexpression of TCR-V beta 8 and in its expression of some potentially autoreactive TCR-V beta specificities. This unusual TCR-V beta repertoire was even expressed by Ly-6C+ thymocytes contained within the CD4+ CD8- 'single positive' thymocyte subset. Thus, expression of this unusual TCR-V beta repertoire is not limited to CD4-CD8-thymocytes, and is unlikely to be a consequence of their double negative phenotype. Rather, we think that Ly-6C+TCR-alpha beta+ thymocytes and CD4-CD8-TCR-alpha beta+ are developmentally interrelated, a conclusion supported by several lines of evidence including the selective failure of both Ly-6C+ and CD4-CD8-TCR-alpha beta+ thymocyte subsets to appear in TCR-beta transgenic mice. In contrast, peripheral Ly-6C+ T cells are developmentally distinct from Ly-6C+ thymocytes in that peripheral Ly-6C+ T cells expressed a conventional TCR-V beta repertoire and developed normally in TCR-beta transgenic mice in which Ly-6C+ thymocytes failed to arise. We conclude that: 1) expression of a skewed TCR-V beta repertoire is a characteristic of Ly-6C+TCR-alpha beta+ thymocytes as well as CD4-CD8-TCR-alpha beta+ thymocytes, and is not unique to thymocytes expressing neither CD4 nor CD8 accessory molecules; and 2) Ly-6C+ thymocytes are developmentally linked to CD4-CD8-TCR-alpha beta+ thymocytes, but not to Ly-6C+ peripheral T cells. We suggest that Ly-6C+TCR-alpha beta+ thymocytes are not the developmental precursors of Ly-6C+ peripheral T cells, but rather may be the developmental precursors of CD4-CD8-TCR-alpha beta+ thymocytes.  相似文献   

3.
IL-7 induced the proliferation of normal thymocytes and the effect was synergistically potentiated by a small dose of IL-2, which by itself hardly affected thymocyte proliferation. No synergism was observed between IL-7 and any one of the other lymphokines including IL-1, IL-3, and IL-4. The thymocyte culture stimulated with IL-7 and IL-2 consisted of single positive (CD4+CD8- and CD4-CD8+) and double negative (CD4-CD8-) populations, and double positive (CD4+CD8+) cells were completely deleted. Both single positive and double negative thymocytes expressed CD3, but only the former exhibited V beta 8 and V beta 6 in an expected proportion (approximately 30% in BALB/c mice) and the latter none at all. Immunoprecipitation of the cultured thymocytes by anti-TCR gamma antibody, on the other hand, revealed the presence of a TCR gamma chain. Taken together, these results indicated that the thymocyte cultured with IL-7 and IL-2 consisted of mature T cells bearing alpha beta or gamma delta TCR. Experiments using preselected thymocyte subpopulations indicated that double negative cells responded to both IL-7 and IL-2 with positive synergism when combined, while thymocytes enriched for single positive cells preferentially responded to IL-7 with little response to IL-2 and no detectable synergism. Double positive thymocytes showed no proliferation in response to IL-7 and IL-2. In contrast to single positive thymocytes, splenic T cells hardly responded to IL-7, although significant proliferation was induced in the presence of a low dose of IL-2. Thymocytes cultured with IL-7 and IL-2 showed little nonspecific cytotoxic activity, but responded to Con A or alloantigen, whereas those stimulated with a high dose of IL-2 alone exhibited potent cytotoxic activity. These results indicated that IL-7 was involved in the generation of immunocompetent T cells in the thymus in concert with IL-2.  相似文献   

4.
The source of IL-4 required for priming naive T cells into IL-4-secreting effectors has not been clearly identified. Here we show that upon TCR stimulation, thymus NK1-CD4+8- T cells produced IL-4, the magnitude of which was inversely correlated with age. This IL-4 production response by Th2-prone BALB/c mice was approximately 9-fold that of Th1-prone C57BL/10 mice. More than 90% of activated NK1-CD4+8- thymocytes did not use the invariant V alpha 14-J alpha 281 chain characteristic of typical CD1-restricted NK1+CD4+ T cells. Stat6-null NK1-CD4+8- thymocytes produced bioactive IL-4, with induction of IL-4 mRNA expression within 1 h of stimulation. Our results support the possibility that TCR repertoire-diverse conventional NK1-CD4+ T cells are a potential IL-4 source for directing naive T cells toward Th2/type 2 CD8+ T cell (Tc2) effector development.  相似文献   

5.
Triggering of distinct CD2 epitopes on human T lymphocytes increases their phosphatidylinositol (PI) cycle-related metabolism. In this work, we investigated the relationship between this signal transduction pathway following surface CD2 antigen triggering and intrathymic T cell development. Therefore, various thymocyte subsets were incubated with co-mitogenic CD2I+III mAb. The cells were then tested for their various phosphoinositides levels as well as their ability to proliferate in response to recombinant interleukin-2 (rIL-2). Our results indicate that immature CD4- CD8- cells have high PI metabolism while more mature CD4+CD8+ and unfractionated thymocytes display significantly lower PI-turnover. Mature CD4+CD8- and CD4-CD8+ thymocytes regain this transduction capacity. Thus, PI-turnover following CD2- triggering is linked to the developmental fate of thymocyte subclasses.  相似文献   

6.
T cell development in mice lacking the CD3-zeta/eta gene.   总被引:25,自引:3,他引:22       下载免费PDF全文
The CD3-zeta and CD3-eta polypeptides are two of the components of the T cell antigen receptor (TCR) which contribute to its efficient cell surface expression and account for part of its transducing capability. CD3-zeta and CD3-eta result from the alternative splicing of a single gene designated CD3-zeta/eta. To evaluate the role of these subunits during T cell development, we have produced mice with a disrupted CD3-zeta/eta gene. The analysis of thymocyte populations from the CD3-zeta/eta-/- homozygous mutant mice revealed that they have a profound reduction in the surface levels of TCR complexes and that the products of the CD3-zeta/eta gene appear to be needed for the efficient generation and/or survival of CD4+CD8+ thymocytes. Despite the almost total absence of mature single positive thymocytes, the lymph nodes from zeta/eta-/- mice were found to contain unusual CD4+CD8- and CD4-CD8+ single positive cells which were CD3-. In contrast to the situation observed in the thymus, the thymus-independent gut intraepithelial lymphocytes present in zeta/eta-/- mice do express TCR complexes on their surface and these are associated with Fc epsilon RI gamma homodimers. These results establish an essential role for the CD3-zeta/eta gene products during intrathymic T cell differentiation and further emphasize the difference between conventional T cells and thymus-independent gut intraepithelial lymphocytes.  相似文献   

7.
The MTEC1 cell line,established in our laboratory,is a normal epithelial cell line derived from thymus medulla of Balb/c mice and these cells constituteively produce multiple cytokines.The selection of thymic microenvironment on developing T cells was investigated in an in vitro system.Unseparated fresh thymocytes from Balb/c mice were cocultured with MTEC1 cells or/and MTEC1-SN,then,the viability,proliferation and phenotypes of cultured thymocytes were assessed.Without any exogenous stimulus,both MTEC1 cells and MTEC1-SN were able to maintain the viability of thymocytes,while only the MTEC1 cells,not the MTEC1-SN,could directly activate thymocytes to exhibit moderate proliferation,indicating that the proliferative signal is delivered through cell surface interatcions of MTEC1 cells and thymocytes.Phenotype analysis on FACS of viable thymocytes after coculture revealed that MTEC1 cells preferentially activate the subsets of CD4^ CD8^-,CD4^ CD^8 and CD^4- CD^8- thymocytes;whereas MTEC1-SN preferentially maintained the viability of CD4^ CD^8- and CD4^-CD8^ thymocyte subsets.For the Con A-activated thymocytes.both MTEC1 cells and MTEC1-SN provided accessory signal(s) to significantly increase the number of viable cells and to markedly enhance the proliferation of thymocytes with virtually equal potency,phenotyped as CD4^ CD8^-,CD4^-CD8^ ,and CD^4-CD8^-subests,In summary,MTEC1 cells displayed Selection of thymic epithelial cells on thymocyte subsets. selective support to the different thymocyte subsets,and the selectivity is dependent on the status of thymocytes.  相似文献   

8.
We have studied the expression and function of c-kit on subsets of mouse thymocytes. c-kit was primarily expressed on subpopulations of CD4-CD8-CD3- triple negative (TN) cells. The strongest c-kit expression was associated with subsets that represent the least mature TN cells, including CD44+CD25- TN, and a subpopulation of CD25+ TN. These cells were also Thy-1lo, H-2Khi TSA-1hi, HSAlo, B220-, Mac-1-, and Gr-1-. Additionally, the recently described pre-TN thymocyte population (CD4loCD3-CD8-) was also c-kit+. CD25+ TN thymocytes proliferated in the presence of IL-7 and stem cell factor (the ligand for c-kit), and this proliferation was completely inhibited in the presence of anti-c-kit. Furthermore, the addition of anti-c-kit to 2-deoxyguanosine-treated fetal thymic lobes undergoing reconstitution with fetal liver-derived precursor cells inhibited their T cell differentiation potential. These observations indicate an important role for c-kit/stem cell factor interactions during early thymocyte development.  相似文献   

9.
Activation of cloned human natural killer cells via Fc gamma RIII   总被引:5,自引:0,他引:5  
The Fc gamma RIII (CD16) Ag on human NK cells involved in antibody-dependent cellular cytotoxicity has been demonstrated to be an important activation structure. The present studies were carried out to further characterize the functional role of the CD16 Ag and the mechanisms whereby cytotoxicity is activated by using human NK clones. In phenotypic studies Fc gamma RIII was found to be expressed heterogeneously on various human cloned NK cells. Expression on CD3- and CD3+ clones varied with the donor and mAb used for detection. Functional data demonstrated that cytotoxicity against NK-resistant target cells can be induced in CD3-CD16+ NK clones and CD3+CD16+ clones with NK activity when various CD16 mAb were used. CD16 antibodies but not reactive isotype control antibodies induced cytotoxicity. In contrast to complete CD16 antibodies F(ab')2 fragments were not able to activate the cytotoxic mechanism. Both an antibody against FcR on the target cell (Fc gamma RII) and a CD11a antibody blocked induction of cytotoxicity. These results suggest that three steps are critical for activation of CD16+ cells via Fc gamma RIII: 1) specific binding of CD16 antibodies to Fc gamma RIII on effector cells irrespective of the epitope recognized; 2) cross-linking of effector cell CD16 Ag through binding of the Fc site of CD16 antibodies via corresponding FcR on the target cell membrane; and 3) interaction of CD11a/18 molecules with the target cell membrane.  相似文献   

10.
In the thymus, T cell development proceeds by successive steps of differentiation, expansion, and selection. Control of thymocyte proliferation is critical to insure the full function of the immune system and to prevent T cells from transformation. Deletion of the cell cycle inhibitor p16(INK4a) is frequently observed in human T cell neoplasias and, in mice, gene targeted inactivation of the Ink4a locus enhances thymocyte expansion and predisposes mutant animal to tumorigenesis. Here, we investigate the mechanism by which p16(Ink4a) controls thymocyte development by analyzing transgenic mice expressing the human p16(INK4a) into the T cell lineage. We show that forced expression of p16(INK4a) in thymocytes blocked T cell differentiation at the early CD4-CD8-CD3-CD25+ stage without significantly affecting the development of gammadelta T cells. Pre-TCR function was mimicked by the induction of CD3 signaling in thymocytes of recombinase activating gene (RAG)-2-deficient mice (RAG-2(-/-)). Upon anti-CD3epsilon treatment in vivo, p16(INK4a)-expressing RAG-2(-/-) thymocytes were not rescued from apoptosis, nor could they differentiate. Our data demonstrate that expression of p16(INK4a) prevents the pre-TCR-mediated expansion and/or survival of differentiating thymocytes.  相似文献   

11.
Lymphocytes from the human (h) IL-2R alpha chain transgenic mice (TGM) constitutively express high affinity binding sites for hIL-2, consisting of transgenic h-IL-2R alpha and endogenous murine IL-2R beta, and therefore easily proliferate in vitro in response to hIL-2. Our study was undertaken to clarify the hIL-2-responsive lymphocyte subsets in the TGM, which should most likely reflect the normal distribution of m IL-2R beta expression. In both thymus and spleen, the majority of expanded cells by hIL-2 was CD3+CD4-CD8+ TCR alpha beta+ cells. The proliferation of CD4+ cells was not observed at all from either organ despite the expression of transgenic hIL-2R alpha. Potent cellular proliferation was also observed from the thymocytes that had been depleted of CD8+ cells, the expanded cells consisting of CD3- (15-40%) and CD3+ populations (60-85%). Among CD3+ cells, approximately the half portion expressed TCR alpha beta, whereas the other half was suggested to express TCR gamma delta. A variable portion (5-20%) of the CD3+ cells expressed CD8 (Lyt-2) in the absence of Lyt-3, and the CD3+CD8+ cells were confined preferentially to the TCR alpha beta- (TCR gamma delta+) population. In the culture of splenocytes depleted of CD8+ cells, however, the proliferated cells were mostly CD3-CD4-CD8-TCR-Mac1-, whereas a minor portion (10-30%) was CD3+CD4-CD8-TCR alpha beta- (TCR gamma delta+. Analysis of TCR genes at both DNA and mRNA levels confirmed the phenotypical observations. These results strongly suggested that IL-2R beta was constitutively and selectively expressed on the primary murine thymocytes and splenic T and NK cells, except for CD4+ cells in both organs.  相似文献   

12.
The T cell populations present in normal murine bone marrow have not been previously analyzed in detail, mainly because of their relative rarity. In order to permit such analyses, bone marrow T cells were enriched by depleting Mac1-positive cells, which constitute 65 to 90% of bone marrow cells (BMC), and then studied by two-color flow cytometry. Analysis of the remaining cells revealed that the T cell profile of adult murine bone marrow is markedly different from that of other lymphoid organs. A very high proportion of bone marrow CD3+ cells (approximately one-third) are CD4-CD8-. CD3+CD4-CD8- cells are much more concentrated among BMC T cells than among thymocytes or splenic T cells, suggesting that bone marrow may be either a site of extrathymic TCR gene rearrangement, or a major site to which such cells home from the thymus. The expression of NK1.1 was also evaluated on Mac1-depleted BMC populations. Surprisingly, up to 39% of alpha beta TCR+ BMC were found to express NK1.1. Most alpha beta TCR+NK1.1+ BMC also expressed CD4 or CD8. NK1.1+ alpha beta TCR+ cells represented a much greater proportion of BMC T cells than of other lymphoid (splenocyte or thymocyte) T cell populations. Mac1-depleted BMC of nude mice contained very few cells with this phenotype. These results are consistent with the hypothesis that NK1.1+ alpha beta TCR+ cells are generated primarily in the thymus of normal animals and migrate preferentially to bone marrow, where they may function as regulatory elements in hematopoiesis.  相似文献   

13.
The T cell antigen receptor (TCR)-associated invariable membrane proteins (CD3-gamma, -delta, -epsilon and -zeta) are critical to the assembly and cell surface expression of the TCR/CD3 complex and to signal transduction upon engagement of TCR with antigen. Disruption of the CD3-zeta gene by homologous recombination resulted in a structurally abnormal thymus which primarily contained CD4- CD8- and TCR/CD3very lowCD4+CD8+ cells. Spleen and lymph nodes of CD3-zeta-/- mutant mice contained a normal number and ratio of CD4+ and CD8+ single positive cells that were TCR/CD3very low. These splenocytes did not respond to antibody cross-linking or mitogenic triggering. The V beta genes of CD4-CD8- and CD4+CD8+ thymocytes and splenic T cells were productively rearranged. These data demonstrated that (i) in the absence of the CD3-zeta chain, the CD4- CD8- thymocytes could differentiate to CD4+CD8+ TCR/CD3very low thymocytes, (ii) that thymic selection might have occurred, (iii) but that the transition to CD4+CD8- and CD4-CD8+ cells took place at a very low rate. Most strikingly, intraepithelial lymphocytes (IELs) isolated from the small intestine or the colon expressed normal levels of TCR/CD3 complexes on their surface which contained Fc epsilon RI gamma homodimers. In contrast to CD3-zeta containing IELs, these cells failed to proliferate after triggering with antibody cross-linking or mitogen. In comparison to thymus-derived peripheral T cells in the spleen and lymph nodes, the preferential expression of normal levels of TCR/CD3 in intestinal IELs suggested they mature via an independent extrathymic pathway.  相似文献   

14.
The murine CD4- CD8- (double negative, DN) thymocyte cell line and clones expressing T cell receptor gamma delta chains in association with CD3 complex have been established and characterized. This line and a representative clone (DN7.12.11) which appear to derive from the minor population of CD3+ DN thymocytes can be stimulated to proliferate and to produce lymphokines by anti-CD3 or anti-Thy-1 antibodies or calcium ionophore plus phorbol ester. Autocrine proliferation is dependent on binding of interleukin (IL)2 to functional IL2 receptor. Upon stimulation, these cells produce IL2 and IFN-gamma but not IL4, resembling conventional CD4+ TH1 cells in this regard. The cloned line also mediates spontaneous cytolysis against a variety of tumor targets without regard for the presence of conventional major histocompatibility complex molecules on the target cell surface. Blocking and modulation experiments suggest that target recognition by the gamma delta/CD3 complex is not involved in the spontaneous lysis, resembling natural killer (NK) cells. The results suggest that gamma delta +DN T cells are able to have mature functions such as NK-like cytotoxicity and lymphokine secretion as peripheral gamma delta +T cells. They also provide a possible role of gamma delta + DN thymocytes in establishing a intrathymic environment for differentiation and selection of alpha beta-expressing T cells.  相似文献   

15.
The relationship between NK cell and T cell progenitors was investigated by using mice with severe combined immune deficiency (scid). Scid mice are devoid of mature T and B cells because they cannot rearrange their Ig and TCR genes. However, they have normal splenic NK cells. Thymus of scid mice, although markedly hypocellular, contains cells that lyse YAC-1, an NK-sensitive tumor cell. By flow cytometry, two populations of cells were identified in the scid thymus. Eighty percent of the cells were Thy-1+, IL-2R(7D4)+, J11d+, CD3-, CD4-, CD8- whereas the remaining were IL-2R-, J11d-, CD3-, CD4-, and CD8-. By cell sorting, all NK activity was found in the latter population, which is phenotypically similar to splenic NK cells. To determine if the thymus contains a bipotential NK/T progenitor cell, J11d+, IL-2R+ cells were cultured and analyzed for the generation of NK cells in vitro. These cells were used because they resemble 15-day fetal and adult CD4- CD8- thymocytes that are capable of giving rise to mature T cells. Cultured J11d+ thymocytes acquired non-MHC-restricted cytotoxicity, but in contrast to mature NK cells, the resulting cells contained mRNA for the gamma, delta, and epsilon-chains of CD3. This suggests that J11d+ cells are early T cells that can acquire the ability to kill in a non-MHC-restricted manner, but which do not give rise to NK cells in vitro. The differentiative potential of scid thymocytes was also tested in vivo. Unlike bone marrow cells, scid thymocytes containing 80% J11d+ cells failed to give rise to NK cells when transferred into irradiated recipients. Together these results suggest that mature NK cells reside in the thymus of scid mice but are not derived from a common NK/T progenitor.  相似文献   

16.
Despite evidence for the expression of low affinity Fc receptor for IgE (Fc epsilon RII)/CD23 in T cell lines and pathologic T cells, Fc epsilon RII/CD23 in normal human T cells is still unclear. We studied the expression of Fc epsilon RII/CD23 on T cells in short-term culture of normal human PBMC stimulated with 15 micrograms/ml PHA. PHA stimulation also resulted in the release of soluble Fc epsilon RII/CD23 (IgE binding factor). Using two-dimensional flow cytometry, more than 10% of the Fc epsilon RII/CD23+ cells were found to co-express CD3 Ag. Both CD4+ and CD8+ T cells expressed Fc epsilon RII/CD23. The induction of Fc epsilon RII/CD23 on PHA-activated T cells was enhanced by IL-2 as well as IL-4. Both IL-2 and IL-4 also augmented PHA-induced production of soluble Fc epsilon RII/CD23. The enhanced expression of Fc epsilon RII/CD23 on T cells by both lymphokines was suppressed by rabbit anti-IL-4 antiserum, suggesting the involvement of an IL-4-dependent process even in the IL-2-dependent Fc epsilon RII/CD23 expression on T cells. The expression of mRNA for Fc epsilon RII/CD23 on PHA and IL-4-stimulated PBMC was examined by Northern blot analysis. Fc epsilon RII/CD23 mRNA was detected in RNA prepared from the T cell fraction depleted of B cells and macrophages (Fc epsilon RII+CD3+ = 6.2%, Fc epsilon RII+CD3- = 0.8%). The expression of the mRNA for Fc epsilon RII/CD23 on CD3+ T cells was also confirmed by in situ hybridization with Fc epsilon RII/CD23 cDNA combined with CD3 rosette formation at the single cell level.  相似文献   

17.
We previously reported that IL-7 maintains the viability and differentiation potential of CD25 (IL-2R p55) positive CD3-CD4-CD8- thymic pre-T cells in vitro. This culture system is suitable for studying signals that regulate differentiation of T cell precursors in the thymus. In this study, we screened cytokines for their capacity to induce CD4 or CD8 in murine thymic pre-T cells cultured with IL-7. Of 15 cytokines tested, only transforming growth factor (TGF-beta) and TNF-alpha induced CD8 (Lyt-2), while no cytokine was able to induce CD4 on CD25+CD3-CD4-CD8- thymocytes. The combination of TGF-beta and TNF-alpha was synergistic, and the majority of cells recovered after 2 to 3 days in culture expressed CD8 (but not CD3 or CD4). A similar effect of TGF-beta and TNF-alpha was observed using day-15 fetal thymocytes, CD3+CD4-CD8- or CD3+CD4+CD8- adult thymocytes, although the combination of these cytokines resulted in an additive rather than a synergistic effect in these subsets. In contrast, neither TGF-beta nor TNF-alpha induced CD8 expression on splenic CD4+CD8- T cells. These observations suggest a role for these cytokines in the induction of CD8 expression in CD8- thymocyte subsets including CD3-CD4-CD8- thymic pre-T cells.  相似文献   

18.
19.
20.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号