首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Influence of Na+,K+,2Cl(-)-cotransport and chloride permeability of the cell membrane on electrically-induced action potential and contraction of smooth muscle cells from guinea pig ureter was examined with the methods of the double sucrose gap junction. Mesatone (10 microM) and histamine (10 microM) induced prolongation of the action potential and elevation of smooth muscle cell contraction, whereas hyperosmic medium (+150 mM sucrose), and recovery of solution osmolality in hyposmic condition (70 mM NaCl) after a single contraction. Inhibitor Na+,K+,2Cl(-)-cotransport bumetanide (10 microM) and chloride permeability blockers niflumic acid (10-100 microM) and SITS (10-500 microM) attenuated stimulating effects of mesatone, histamine and hyperosmic medium. In opposite to adenylate cyclase activation with forskolin (1 microM), guanylate cyclase activation with sodium nitroprusside (SN, 100 microM) decreased both inhibitory action of bumetanide, niflumic acid and activating effects of mesatone, histamine on action potential and elevation contraction of smooth muscle cells. Influence of forskolin rather and not SN on AP and SMC C was inhibited with tetraethylammonium (5 mM). These results suggest that influence of Na+,K+,2Cl(-)-cotransport on electrical and contractil properties of ureter smooth muscle cells is mediated by stimulation of Ca(2+)-activated chloride permeability of the cell membrane and modulated by intracellular cGMP, but not triggered by Ca2+ release from sarcoplasmic reticulum.  相似文献   

2.
We have studied the effect of a calcium ionophore, A23187, and the purported calmodulin inhibitors, calmidazolium and chlorpromazine, on direct intercellular communication between smooth muscle cells in the myometrium of delivering rats. The extent of cell-to-cell coupling was determined by exposing one portion of small strips of longitudinal myometrium to 2-[3H] deoxy-D-glucose (2-DG) and determining the distribution and apparent diffusion coefficient (Da) for this tracer after a 5-h period for diffusion. The distribution and Da for 2-DG were significantly (p less than 0.05) reduced by exposure to A23187 in Krebs-Ringer solution with 2.5 mM Ca++, partially reduced in Krebs solution with A23187 and low Ca++ (1-10 microM), but the drug had no effect when used with Ca++-free solutions with [ethylenebis (oxyethylene-nitrilo)] tetraacetic acid (EGTA). The calmodulin inhibitors blocked the effects of A23187 in a dose-dependent fashion, and at higher concentrations, the extent of 2-DG diffusion was not different from that in control tissues. Surprisingly, however, a dose-dependent reduction in coupling was also observed in tissues exposed to the calmodulin inhibitors alone. Structural studies failed to reveal any change in the area of gap junctions between the myometrial cells following the above treatments, suggesting that the reduced exchange of 2-DG resulted from a decrease in the permeability of gap junctions between the muscle fibers.  相似文献   

3.
In concentrations of 10(-9)-10(-7) g/ml acetylcholine increased the tone of the smooth muscles of the longitudinal band of the large intestine of a guinea pig, increasing the permeability of the cellular membranes for the entering flux of 45Ca2+. In concentrations of 10(-6) g/ml and over acetylcholine caused a release of the membranous calcium and in the concentrations of 10(-5)-10(-3) g/ml markedly increased the permeability of the membranes of the smooth muscle cells for the 22Na+ ions causing depolarization and an increase in the frequency of the action potentials. It is supposed that the coupling of the cholinergic stimulus with the end effect (muscle contraction) included 3 components: intensification of the entrance of Ca2+ into the smooth muscle cells, release of the membrane calcium and adhesion mechanism.  相似文献   

4.
A study was made of the action of theophylline, isobutyrylmethylxanthine and caffeine on the sensitivity of mouse diaphragmatic muscle fibers to iontophoretically applied acetylcholine (ACh). It was shown that these substances at concentrations of 5 X 10(-4) -5 X 10(-3) M reduced the amplitude and increased the duration of the ACh potential as well as accelerated desensitization of the cholinoceptor at repetitive application of ACh. As regards the action on the ACh potential amplitude two phases which differed in the time-course of development and washing were recognized: rapid and slow. Addition of dibutyryl-cAMP (5 X 10(-4) M) after theophylline (10(-3) M) potentiated the latter's action on the ACh potential amplitude but did not influence its duration and the rate of desensitization. It is assumed that the action of phosphodiesterase inhibitors on the duration of the ACh potential and the rate of desensitization is not mediated by an elevation in the muscle cAMP content. Apparently, cAMP accumulation may be responsible but for the phase of a slow decrease in the ACh potential amplitude.  相似文献   

5.
A monoclonal antibody was used to quantitate changes in the extent of phosphorylation of the type II regulatory subunit of cAMP-dependent protein kinase in intact bovine tracheal smooth muscle. The autophosphorylated and nonphosphorylated forms of the regulatory subunit (RII) were separated in sodium dodecyl sulfate-polyacrylamide gels and identified by immunoblot analysis. Addition of cAMP to tissue extracts resulted in rapid dephosphorylation of RII (t 1/2 = 20s at 4 degrees C) while addition of MgATP caused complete conversion to the phosphorylated form. Under basal conditions, 56% of RII in intact muscle was phosphorylated when the tissue was homogenized under conditions which fully inhibit protein kinase and phosphatase activities. Incubation with isoproterenol caused a dose-dependent decrease in the phosphorylation state of RII (EC50 = 5 X 10(-8) M). Incubation with high concentrations of isoproterenol, 1-methyl-3-isobutylxanthine, or forskolin caused maximal decreases in the phosphorylated form to 12-18% of the total RII. The effect of isoproterenol was rapid (t 1/2 = 15 s at 37 degrees C), reversible, and could be blocked with the antagonist propranolol. Contraction of the smooth muscle with K+ or low (less than 1 microM) concentrations of carbachol had no effect on the phosphorylation level. A decrease in the basal phosphorylation level to 41% was observed with 10 microM carbachol which was additive with the dephosphorylation produced by isoproterenol. The time course of isoproterenol-induced dephosphorylation of RII paralleled that of muscle relaxation, consistent with a role of cAMP-dependent protein kinase activation in relaxation of smooth muscle.  相似文献   

6.
Since the Ca2+-regulatory mechanism for actin-myosin interaction in smooth muscle involves phosphorylation of the 20,000-Da myosin light chains, it was hypothesized that such interaction should be influenced by myosin phosphatase. Accordingly, we studied the effects of an aortic myosin light-chain phosphatase on Ca1+-dependent actin-myosin interaction in detergent-skinned porcine carotid artery and bovine aortic native actomyosin. In skinned preparations, the aortic phosphatase (16 U/ml) markedly inhibited the rate of isometric contraction in low Ca2+ (6.8 X 10(-7) M) and responsiveness to Ca2+ (force attained with 6.8 X 10(-7) Ca2+/force attained with 1.6 X 10(-6) M Ca2+), whereas relaxation was accelerated. Ca2+-dependent actomyosin ATPase activity and phosphorylation of the light chains were significantly and progressively depressed in the presence of increasing concentrations of phosphatase (0.1-0.9 U/ml). The concentration of Ca2+ (1.1 X 10(-6) M) required for half-maximal activation of either ATPase activity or light-chain phosphorylation increased by 70% in the presence of 0.1 U phosphatase/ml. Neither the maximal rate of Ca2+-sensitive ATP hydrolysis (39 +/- 0.8 nmole/min/mg actomyosin) nor the extent of phosphorylation (0.68 +/- 0.05 mole PO4/mole light chain) was altered at greater than 5 X 10(-6) M Ca2+. ATPase activity was correlated to light-chain phosphorylation under diverse conditions including the presence or absence of 1 microM calmodulin, different concentrations of phosphatase (0-0.9 U/ml), and different concentrations of Ca2+ (10(-8) to 1.25 X 10(-5) M). However, significant phosphorylation was present (20-25% of maximum) in the absence of Ca2+-dependent ATPase activity and only 15% of the maximal rate of ATP hydrolysis was expressed until phosphorylation attained 50% of its maximal value. These findings are consistent with the ordered model of myosin phosphorylation suggested by A. Persechini and D. J. Hartshorne [Science (Washington, DC), 213:1383-285, 1961] (36). They also suggest that myosin phosphatase may participate in modulating actin-myosin interactions in vascular smooth muscle.  相似文献   

7.
The purpose of this study was to elucidate the mechanisms by which ATP increases guinea pig gallbladder smooth muscle (GBSM) excitability. We evaluated changes in membrane potential and action potential (AP) frequency in GBSM by use of intracellular recording. Application of ATP (100 microM) caused membrane depolarization and a significant increase in AP frequency that were not sensitive to block by tetrodotoxin (0.5 microM). The nonselective P2 antagonist, suramin (100 microM), blocked the excitatory response, resulting in decreased AP frequency in the presence of ATP. The excitatory response to ATP was not altered by pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid (30 microM), a nonselective P2X antagonist. UTP also caused membrane depolarization and increased AP frequency, with a similar dose-response relationship as ATP. RT-PCR demonstrated that the P2Y(4), but not P2Y(2), receptor subtype is expressed in guinea pig gallbladder muscularis. ATP induced excitation was blocked by indomethacin (10 microM) and the cyclooxygenase (COX)-1 inhibitor SC-560 (300 nM), but not the COX-2 inhibitor nimesulide (500 nM). These data suggest that ATP stimulates P2Y(4) receptors within the gallbladder muscularis and, in turn, stimulate prostanoid production via COX-1 leading to increased excitability of GBSM.  相似文献   

8.
The ethnomedicinal uses of the aqueous leaf extract of Andrographis paniculata Nees (AP) include treatment of pain and inflammation, malaria, asthma and common cold. We designed this study to characterize some effects of AP and those of its andrographolide constituent. Guinea pig tracheal rings suspended in organ baths containing PSS were precontracted with histamine or carbachol and then exposed to cumulative concentrations of AP, andographolide or theophylline. The effect of AP was tested in Ca2+-depleted tracheal rings stimulated with the EC50 of histamine in Ca2+-free PSS. IC50 and Emax values were calculated for each relaxant. Results showed that both AP and andrographolide possessed relaxant effects on the tracheal smooth muscle. While AP was more effective on histamine-induced contraction, andrographolide and theophylline were more effective on carbachol-induced contraction. The IC50 values of andrographolide were significantly higher than those of theophylline in the two contractile agents. The presence of AP significantly attenuated the contractile force produced by 6.4 x 10-3 M Ca2+ in Ca2+-depleted rings. It is concluded that andographolide contributes at least in part to the relaxant action of AP on tracheal smooth muscles. The mechanism of action is related to inhibition of Ca2+ influx into tracheal smooth muscle cells.  相似文献   

9.
1. The effect of substance P on the mechanical activity of carp intestinal bulb smooth muscle was investigated in vitro. 2. Bath-applied substance P (1 nM-1 microM) caused concentration-dependent contraction of the smooth muscle. The EC50 value was 20 +/- 3 nM (N = 13). 3. Pretreatment with tetrodotoxin (780 nM) or atropine (500 nM) partially decreased the contractile response to substance P, while methysergide (3 microM) did not decrease the response. 4. The contractile response to substance P was not decreased by [D-Pro2, D-Trp7.9]-substance P or [D-Pro4, D-Trp7.9]-substance P (4-11) pretreatment (10 microM for 5 min). 5. Exposure of the intestinal bulb to substance P (100 nM and 1 microM for 15 min) decreased the response to subsequent application of substance P, physalaemin and eledoisin in a concentration dependent manner, while the contractile response to acetylcholine or methionine-enkephalin was not affected. 6. Exposure of the intestinal bulb to physalaemin and eledoisin (100 nM for 15 min) decreased the response to subsequent application of substance P. 7. The above results indicate that substance P causes the contraction of the carp intestinal bulb smooth muscle through its direct action on the smooth muscle and its indirect action through enteric cholinergic nerves. Long-term exposure to substance P causes desensitization of the preparation to substance P, physalaemin and eledoisin at the receptor level.  相似文献   

10.
This investigation was carried out to study allergic contraction of passively sensitized human airway smooth muscle in response to specific antigen challenge. We attempted to determine the role played by histamine, slow reaction substances (SRSs), and cyclooxygenase products in the mediation of this response in tracheal smooth muscle. Tissues were passively sensitized with serum from ragweed-sensitive patients (15 h, 4 degrees C). Subsequent challenge with ragweed antigen produced a slowly developing contraction. The peak contraction to a dose producing a maximal response was 37 +/- 6% of the carbachol maximum. Mepyramine (5 X 10(-6) M) did not alter the contraction. Methylprednisolone (2 X 10(-5) M) attenuated the response to antigen but had no significant effect on the contractile response to arachidonic acid. Indomethacin (5.6-28 X 10(-6) M) enhanced the peak antigen-induced contractions by 25 +/- 11% whereas 5,8,11,14-eicosatetraynoic acid (6.4 X 10(-5) M) selectively attenuated the antigen-induced contraction by 86 +/- 12%. Nordihydroguarietic acid (6-12 X 10(-6) M) attenuated both the antigen plus arachidonate induced responses. FPL-55712 (1-2 X 10(-6) M) antagonized the contractions to antigen. Compound 48/80 and goat antihuman immunoglobulin E produced similar slowly developing contractions in sensitized and in some nonsensitized tissues. These responses, except for an early component of the response to 48/80, were independent of histamine and were reversed by FPL-55712. These findings suggest that arachidonic acid metabolites mediate (slow reacting substances) and modulate (prostaglandins) allergic contraction of human airway smooth muscle while any histamine released contributes little or nothing to the contraction in the larger airways.  相似文献   

11.
Platelet-activating factor (PAF) contracts smooth muscle of airways and vessels primarily via release of thromboxane. Contraction of smooth muscle is thought to be mediated either by calcium and inositol trisphosphate (IP(3))-dependent activation of the myosin light chain kinase or, alternatively, via the recently discovered Rho-kinase pathway. Here we investigated the contribution of these two pathways to PAF and thromboxane receptor-mediated broncho- and vasoconstriction in two different rat models: the isolated perfused lung (IPL) and precision-cut lung slices. Inhibition of the IP(3) receptor (1-10 microM xestospongin C) or inhibition of phosphatidylinositol-specific PLC (30 microM L-108) did not affect bronchoconstriction but attenuated the sustained vasoconstriction by PAF. Inhibition of myosin light chain kinase (35 microM ML-7) or of calmodulin kinase kinase (26 microM STO609), which regulates the phosphorylation of the myosin light chain, had only a small effect on PAF- or thromboxane-induced pressor responses. Similarly, calmidazolium (10 microM), which inhibits calmodulin-dependent proteins, only weakly reduced the airway responses. In contrast, Y-27632 (10 microM), a Rho-kinase inhibitor, attenuated the thromboxane release triggered by PAF and provided partial or complete inhibition against PAF- and thromboxane-induced pressor responses, respectively. Together, our data indicate that PAF- and thus thromboxane receptor-mediated smooth muscle contraction depends largely on the Rho-kinase pathway.  相似文献   

12.
We examined the effects of the tyrosine kinase (TK) inhibitors, genistein, and tyrphostin (RG-50864) on the contractile action of epidermal growth factor - urogastrone (EGF-URO), transforming growth factor-alpha (TGF-alpha), and other agonists in two smooth muscle bioassay systems (guinea pig gastric longitudinal muscle, LM, and circular muscle, CM). We also studied the inhibition by tyrphostin of EGF-URO stimulated protein phosphorylation in identical smooth muscle strips. The selective inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha induced contraction, but not of carbachol- and bradykinin-mediated contraction, occurred at much lower concentrations (genistein, less than 7.4 microM (2 micrograms/mL); tyrphostin, less than 20 microM (4 micrograms/mL)) than those used in previously published studies with these TK inhibitors. In LM tissue, the IC50 values were for genistein 1.1 +/- 0.1 microM (0.30 micrograms/mL; mean +/- SEM) and 3.6 +/- 0.5 microM (0.74 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS: TP) of 1:3 in the longitudinal preparation. In CM tissue, the IC50 values were 3.0 +/- 0.3 microM (0.81 micrograms/mL) for genistein and 2.4 +/- 0.2 microM (0.49 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS:TP) of 1.0:0.8 in the circular strips. The inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha mediated contraction was rapid (beginning within minutes) and was reversible upon washing the preparations free from the enzyme inhibitors. In intact tissue strips studied under bioassay conditions, tyrphostin (40 microM) also blocked EGF-URO triggered phosphorylation of substrates detected on Western blots using monoclonal antiphosphotyrosine antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cooling of isolated guinea pig tracheal smooth muscle from 38 to 28 degrees C over 2.25 min produced a transient contraction followed by sustained relaxation. The cooling-induced contraction was blocked either by pretreatment with ouabain at concentrations of 10(-5) M or greater or by substitution of normal physiological salt solution with K-free solution. In contrast, the contractile response to cooling was not inhibited by pretreatment with phentolamine (10(-5) M), atropine (10(-5) M), tetrodotoxin (3 X 10(-7) M), diphenhydramine (10(-5) M), cromolyn sodium (10(-3) M), indomethacin (3 X 10(-7) M), nifedipine (10(-7) M), or verapamil (3 X 10(-6) M). Addition of NaHCO3 to the bath during cooling, preventing a change in pH of the physiological salt solution, did not affect the cooling-induced contraction. It is concluded that cooling of isolated guinea pig trachea produces a transient ouabain-sensitive contraction, and that the data suggest the contraction is mediated by inhibition of Na-K-ATPase in the smooth muscle rather than through neuronal stimulation or chemical mediator release.  相似文献   

14.
The effects of the Ca2+ ionophore, A23187, on the contraction and membrane action potential of the isolated guinea-pig papillary muscle were examined at various temperatures (30-16 degrees C) and compared to those of isoprenaline and a high calcium medium. A23187 caused a marked positive inotropic effect with a significant prolongation of the action potential duration at an early repolarization phase but not a late repolarization phase at normal temperature (30 degrees C). Such an inotropic effect was completely abolished at low temperature (16 degrees C) where a marked positive inotropic effect of isoprenaline (5 X 10(-8) M) and a high calcium medium (6.2 mM) still remained. These results suggest that the cardiac responsiveness to A23187 was sensitive to a low temperature at which a membrane lipid phase transition may occur.  相似文献   

15.
To determine whether prostaglandin D2 (PGD2) modulates cholinergic neurotransmission in airway smooth muscle and, if so, what the mechanism of action is, we studied bronchial segments from dogs under isometric conditions in vitro. PGD2 (10(-8)-10(-5) M) elicited dose-dependent muscle contraction, which was reduced after blockade of muscarinic receptors, so that 50% effective dose (ED50) increased from 1.3 +/- 0.3 X 10(-6) to 3.9 +/- 1.0 X 10(-6) M by atropine (10(-6) M) (mean +/- SE, P less than 0.05). Physostigmine, at a concentration insufficient to alter base-line tension (10(-8) M), enhanced the PGD2-induced contraction and decreased ED50 to 6.4 +/- 0.5 X 10(-7) M (P less than 0.05). When added at the highest doses that did not cause spontaneous contraction (1.9 +/- 0.5 X 10(-7) M), PGD2 increased the contractile response to electrical field stimulation (1-50 Hz) by 21.9 +/- 6.6% (P less than 0.001). In contrast to this effect, the response to administered acetylcholine was not affected by PGD2. On the other hand, PGD2-induced augmentation of the response to electrical field stimulation (5 Hz) was further increased from 23.6 +/- 3.0 to 70.4 +/- 8.8% in the presence of physostigmine (10(-8) M) and was abolished by atropine but not affected by the alpha-adrenergic antagonist phentolamine or the histamine H1-blocker pyrilamine. These results suggest that the contraction of airway smooth muscle induced by PGD2 is in in part mediated by a cholinergic action and that PGD2 prejunctionally augments the parasympathetic contractile response, likely involving the accelerated release of acetylcholine at the neuromuscular junction.  相似文献   

16.
To evaluate further the action of epidermal growth factor - urogastrone (EGF-URO) in smooth muscle systems, we examined the effect of the peptide on guinea pig tracheal strips. The cumulative addition of EGF-URO to the organ bath resulted in a concentration-dependent tonic contraction without tachyphylaxis. The half-maximal contraction was obtained at 13 +/- 3 ng/mL EGF-URO (2 nM). The maximum contraction at 100 ng/mL approached 60% of that induced by 1 microM histamine. No significant difference in the EGF-URO-induced contraction was observed in the presence or absence of a functional epithelium. Preincubation with 1 microM indomethacin for 20 min abolished the action of EGF-URO. The contractile effect of EGF-URO was not affected by yohimbine, propranolol, atropine, tetrodotoxin, and esculetin. However, mepacrine caused inhibition by 37 +/- 7% (mean +/- SEM for n = 3). Verapamil (10 microM) inhibited the EGF-induced response by 62 +/- 5% (mean +/- SEM for n = 4); the response was also absent in Ca-free (1 mM EGTA) buffer. However, the response was restored after the readdition of calcium. Our results suggest that EGF-URO can modulate tracheal smooth muscle contractility via a cyclooxygenase product and raise the possibility that EGF-URO might play a role in controlling pulmonary smooth muscle tone in vivo.  相似文献   

17.
We examined the effects of superoxide anion (O) generated by xanthine plus xanthine oxidase (X/XO) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) and muscle contractility in cultured bovine aortic smooth muscle cells (BASMC). Cells were grown on collagen-coated dish for the measurement of [Ca(2+)](i). Pretreatment with X/XO inhibited ATP-induced Ca(2+) transient and Ca(2+) release-activated Ca(2+) entry (CRAC) after thapsigargin-induced store depletion, both of which were reversed by superoxide dismutase (SOD). In contrast, Ca(2+) transients induced by high-K(+) solution and Ca(2+) ionophore A-23187 were not affected by X/XO. BASMC-embedded collagen gel lattice, which was pretreated with xanthine alone, showed contraction in response to ATP, thapsigargin, high-K(+) solution, and A-23187. Pretreatment of the gel with X/XO impaired gel contraction not only by ATP and thapsigargin, but also by high-K(+) solution and A-23187. The X/XO-treated gel showed normal contraction; however, when SOD was present during the pretreatment period. These results indicate that O(2)(-) attenuates smooth muscle contraction by impairing CRAC, ATP-induced Ca(2+) transient, and Ca(2+) sensitivity in BASMC.  相似文献   

18.
We have been using lysed cell models of teleost retinal cones to examine the mechanism of contraction in nonmuscle cells. We have previously reported that dark-adapted retinas can be lysed with the detergent Brij-58 to obtain cone motile models that undergo Ca++- and adenosine triphosphate (ATP)-dependent reactivated contraction. In this report we further dissect the roles of ATP and Ca++ in activation of contraction and force production by (a) characterizing the Ca++ and nucleotide requirements in more detail, (b) by analyzing the effects of inosine triphosphate (ITP) and the ATP analog ATP gamma S and (c) by testing effects of cyclic adenosine monophosphate (cAMP) on reactivated cone contraction. Exposing lysed cone models to differing free Ca++ concentrations produced reactivated contraction at rates proportional to the free Ca++ concentration between 3.16 X 10(-8) and 10(-6) M. A role for calmodulin (CaM) in this Ca++ regulation was suggested by the inhibition of reactivated contraction by the calmodulin inhibitors trifluoperazine and calmidazolium ( R24571 ). The results of analysis of nucleotide requirements in lysed cone models were consistent with those of smooth muscle studies suggesting a role for myosin phosphorylation in Ca++ regulation of contraction. ATP gamma S and ITP are particularly interesting in that ATP gamma S, on the one hand, can be used by kinases to phosphorylate proteins (e.g., myosin light chains) but resists cleavage by phosphatases or adenosine triphosphatases (ATPases), e.g., myosin ATPase. ITP, on the other hand, can be used by myosin ATPase but does not support Ca++/calmodulin mediated phosphorylation of myosin light chains by myosin light chain kinase. Thus, these nucleotides provide an opportunity to distinguish between the kinase and myosin ATPase requirements for ATP. When individual nucleotides were tested with cone motile models, the nucleotide requirement was highly specific for ATP; not only ITP and ATP gamma S, but also guanosine triphosphate, cytosine triphosphate, adenylyl-imidodiphosphate (AMPPNP) failed to support reactivated contraction when substituted for ATP throughout the incubation. However, if lysed cones were initially incubated with ATP gamma S and then subsequently incubated with ITP, the cones contracted to an extent that was comparable to that observed with ATP. As observed in skinned smooth muscle, adding cAMP to contraction medium strongly inhibited contraction in lysed cone models.  相似文献   

19.
20.
Calcitonin gene-related peptide (CGRP) is known to excite, through the release of acetylcholine, the circular muscle (CM) of the guinea-pig ileum in vitro. In the present experiments, the effect of rat CGRP was investigated on the CM of tetrodotoxin-treated, spontaneously active ileum preparations. CGRP (1-10 nM) caused concentration-dependent inhibition of both the amplitude and frequency of spontaneous CM contractions. Capsaicin (a sensory stimulant known to release CGRP from primary afferents) also inhibited CM activity. The effect of 1 microM capsaicin underwent rapid desensitization, indicating specific action on afferent structures, whereas a high concentration of the drug (33 microM) inhibited CM activity most probably on the smooth muscle itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号