首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic beta cells secrete insulin in response to elevated plasma glucose levels in a Ca(2+)-dependent fashion. Released insulin may act on the beta cell itself to promote further insulin synthesis and release. Recent studies by Johnson and Misler,1 Masgrau et al.2 and Mitchell et al.3 provide strong evidence (1) for the existence of intracellular Ca(2+) stores sensitive to NAADP, a potent Ca(2+)-mobilizing messenger, and (2) that these Ca(2+) stores are involved in both glucose- and insulin-mediated signal transduction. NAADP may therefore play an important role in controlling secretion of insulin from pancreatic beta cells.  相似文献   

2.
It has long been thought that long-chain free fatty acids (FFAs) stimulate insulin secretion via mechanisms involving their metabolism in pancreatic beta-cells. Recently, it was reported that FFAs function as endogenous ligands for GPR40, a G protein-coupled receptor, to amplify glucose-stimulated insulin secretion in an insulinoma cell line and rat islets. However, signal transduction mechanisms for GPR40 in beta-cells are little known. The present study was aimed at elucidating GPR40-linked Ca(2+) signaling mechanisms in rat pancreatic beta-cells. We employed oleic acid (OA), an FFA that has a high affinity for the rat GPR40, and examined its effect on cytosolic Ca(2+) concentration ([Ca(2+)](i)) in single beta-cells by fura 2 fluorescence imaging. OA at 1-10 microM concentration-dependently increased [Ca(2+)](i) in the presence of 5.6, 8.3, and 11.2 mM, but not 2.8 mM, glucose. OA-induced [Ca(2+)](i) increases at 11.2 mM glucose were inhibited in beta-cells transfected with small interfering RNA targeted to rat GPR40 mRNA. OA-induced [Ca(2+)](i) increases were also inhibited by phospholipase C (PLC) inhibitors, U73122 and neomycin, Ca(2+)-free conditions, and an L-type Ca(2+) channel blocker, nitrendipine. Furthermore, OA increased insulin release from isolated islets at 8.3 mM glucose, and it was markedly attenuated by PLC and L-type Ca(2+) channel inhibitors. These results demonstrate that OA interacts with GPR40 to increase [Ca(2+)](i) via PLC- and L-type Ca(2+) channel-mediated pathway in rat islet beta-cells, which may be link to insulin release.  相似文献   

3.
The role of the calcium-binding protein, calbindin-D(28k) in potassium/depolarization-stimulated increases in the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release was investigated in pancreatic islets from calbindin-D(28k) nullmutant mice (knockouts; KO) or wild type mice and beta cell lines stably transfected and overexpressing calbindin. Using single islets from KO mice and stimulation with 45 mM KCl, the peak of [Ca(2+)](i) was 3.5-fold greater in islets from KO mice compared with wild type islets (p < 0.01) and [Ca(2+)](i) remained higher during the plateau phase. In addition to the increase in [Ca(2+)](i) in response to KCl there was also a significant increase in insulin release in islets isolated from KO mice. Evidence for modulation by calbindin of [Ca(2+)](i) and insulin release was also noted using beta cell lines. Rat calbindin was stably expressed in betaTC-3 and betaHC-13 cells. In response to depolarizing concentrations of K(+), insulin release was decreased by 45-47% in calbindin expressing betaTC cells and was decreased by 70-80% in calbindin expressing betaHC cells compared with insulin release from vector transfected betaTC or betaHC cells (p < 0.01). In addition, the K(+)-stimulated intracellular calcium peak was markedly inhibited in calbindin expressing betaHC cells compared with vector transfected cells (225 nM versus 1,100 nM, respectively). Buffering of the depolarization-induced rise in [Ca(2+)](i) was also observed in calbindin expressing betaTC cells. In summary, our findings, using both isolated islets from calbindin-D(28k) KO mice and beta cell lines, establish a role for calbindin in the modulation of depolarization-stimulated insulin release and suggest that calbindin can control the rate of insulin release via regulation of [Ca(2+)](i).  相似文献   

4.
Secretion from single pancreatic beta-cells was imaged using a novel technique in which Zn(2+), costored in secretory granules with insulin, was detected by confocal fluorescence microscopy as it was released from the cells. Using this technique, it was observed that secretion from beta-cells was limited to an active region that comprised approximately 50% of the cell perimeter. Using ratiometric imaging with indo-1, localized increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) evoked by membrane depolarization were also observed. Using sequential measurements of secretion and [Ca(2+)](i) at single cells, colocalization of exocytotic release sites and Ca(2+) entry was observed when cells were stimulated by glucose or K(+). Treatment of cells with the Ca(2+) ionophore 4-Br-A23187 induced large Ca(2+) influx around the entire cell circumference. Despite the nonlocalized increase in [Ca(2+)](i), secretion evoked by 4-Br-A23187 was still localized to the same region as that evoked by secretagogues such as glucose. It is concluded that Ca(2+) channels activated by depolarization are localized to specific membrane domains where exocytotic release also occurs; however, localized secretion is not exclusively regulated by localized increases in [Ca(2+)](i), but instead involves spatial localization of other components of the exocytotic machinery.  相似文献   

5.
We have demonstrated recently (Mitchell, K. J., Pinton, P., Varadi, A., Tacchetti, C., Ainscow, E. K., Pozzan, T., Rizzuto, R., and Rutter, G. A. (2001) J. Cell Biol. 155, 41-51) that ryanodine receptors (RyR) are present on insulin-containing secretory vesicles. Here we show that pancreatic islets and derived beta-cell lines express type I and II, but not type III, RyRs. Purified by subcellular fractionation and membrane immuno-isolation, dense core secretory vesicles were found to possess a similar level of type I RyR immunoreactivity as Golgi/endoplasmic reticulum (ER) membranes but substantially less RyR II than the latter. Monitored in cells expressing appropriately targeted aequorins, dantrolene, an inhibitor of RyR I channels, elevated free Ca(2+) concentrations in the secretory vesicle compartment from 40.1 +/- 6.7 to 90.4 +/- 14.8 microm (n = 4, p < 0.01), while having no effect on ER Ca(2+) concentrations. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP), a novel Ca(2+)-mobilizing agent, decreased dense core secretory vesicle but not ER free Ca(2+) concentrations in permeabilized MIN6 beta-cells, and flash photolysis of caged NAADP released Ca(2+) from a thapsigargin-insensitive Ca(2+) store in single MIN6 cells. Because dantrolene strongly inhibited glucose-stimulated insulin secretion (from 3.07 +/- 0.51-fold stimulation to no significant glucose effect; n = 3, p < 0.01), we conclude that RyR I-mediated Ca(2+)-induced Ca(2+) release from secretory vesicles, possibly potentiated by NAADP, is essential for the activation of insulin secretion.  相似文献   

6.
An intracellular mechanism activated by nicotinic acid adenine dinucleotide phosphate (NAADP(+)) contributes to intracellular Ca(2+) release alongside inositol 1,4,5-trisphosphate (Ins-P(3)) and ryanodine receptors. The NAADP(+)-sensitive mechanism has been shown to be operative in sea urchin eggs, ascidian eggs, and pancreatic acinar cells. Furthermore, most mammalian cell types can synthesize NAADP(+), with nicotinic acid and NADP(+) as precursors. In this contribution, NAADP(+)-induced Ca(2+) release has been investigated in starfish oocytes. Uncaging of injected NAADP(+) induced Ca(2+) mobilization in both immature oocytes and in oocytes matured by the hormone 1-methyladenine (1-MA). The role of extracellular Ca(2+) in NAADP(+)-induced Ca(2+) mobilization, which was minor in immature oocytes, was instead essential in mature oocytes. Thus, the NAADP(+)-sensitive Ca(2+) pool, which is known to be distinct from those sensitive to inositol 1,4,5-trisphosphate or cyclic ADPribose, apparently migrated closer to (or became part of) the plasma membrane during the maturation process. Inhibition of both Ins-P(3) and ryanodine receptors, but not of either alone, substantially inhibited NAADP(+)-induced Ca(2+) mobilization in both immature and mature oocytes. The data also suggest that NAADP(+)-induced Ca(2+) mobilization acted as a trigger for Ca(2+) release via Ins-P(3) and ryanodine receptors.  相似文献   

7.
We investigated the effect of glycolytic pathway intermediaries upon Ca(2+) release induced by cyclic ADP-ribose (cADPR), inositol 1',4', 5-trisphosphate (IP(3)), and nicotinate adenine dinucleotide phosphate (NAADP) in sea urchin egg homogenate. Fructose 1,6, -diphosphate (FDP), at concentrations up to 8 mM, did not induce Ca(2+) release by itself in sea urchin egg homogenate. However, FDP potentiates Ca(2+) release mediated by agonists of the ryanodine channel, such as ryanodine, caffeine, and palmitoyl-CoA. Furthermore, glucose 6-phosphate had similar effects. FDP also potentiates activation of the ryanodine channel mediated by the endogenous nucleotide cADPR. The half-maximal concentration for cADPR-induced Ca(2+) release was decreased approximately 3.5 times by addition of 4 mM FDP. The reverse was also true: addition of subthreshold concentrations of cADPR sensitized the homogenates to FDP. The Ca(2+) release mediated by FDP in the presence of subthreshold concentrations of cADPR was inhibited by antagonists of the ryanodine channel, such as ruthenium red, and by the cADPR inhibitor 8-Br-cADPR. However, inhibition of Ca(2+) release induced by IP(3) or NAADP had no effect upon Ca(2+) release induced by FDP in the presence of low concentrations of cADPR. Furthermore, FDP had inhibitory effects upon Ca(2+) release induced by both IP(3) and NAADP. We propose that the state of cellular intermediary metabolism may regulate cellular Ca(2+) homeostases by switching preferential effects from one intracellular Ca(2+) release channel to another.  相似文献   

8.
Although intracellular Ca(2+) in pancreatic beta-cells is the principal signal for insulin secretion, the effect of chronic elevation of the intracellular Ca(2+) concentration ([Ca(2+)](i)) on insulin secretion is poorly understood. We recently established two pancreatic beta-cell MIN6 cell lines that are glucose-responsive (MIN6-m9) and glucose-unresponsive (MIN6-m14). In the present study we have determined the cause of the glucose unresponsiveness in MIN6-m14. Initially, elevated [Ca(2+)](i) was observed in MIN6-m14, but normalization of the [Ca(2+)](i) by nifedipine, a Ca(2+) channel blocker, markedly improved the intracellular Ca(2+) response to glucose and the glucose-induced insulin secretion. The expression of subunits of ATP-sensitive K(+) channels and voltage-dependent Ca(2+) channels were increased at both mRNA and protein levels in MIN6-m14 treated with nifedipine. As a consequence, the functional expression of these channels at the cell surface, both of which are decreased in MIN6-m14 without nifedipine treatment, were increased significantly. Contrariwise, Bay K8644, a Ca(2+) channel agonist, caused severe impairment of glucose-induced insulin secretion in glucose-responsive MIN6-m9 due to decreased expression of the channel subunits. Chronically elevated [Ca(2+)](i), therefore, is responsible for the glucose unresponsiveness of MIN6-m14. The present study also suggests normalization of [Ca(2+)](i) in pancreatic beta-cells as a therapeutic strategy in treatment of impaired insulin secretion.  相似文献   

9.
Although numerous extracellular stimuli are coupled to increases in intracellular Ca(2+), different stimuli are thought to achieve specificity by eliciting different spatiotemporal Ca(2+) increases. We investigated the effect of nicotinic acid adenine dinucleotide phosphate (NAADP) inactivation on spatiotemporal Ca(2+) signals in intact sea urchin eggs. The photorelease of NAADP but not inositol 1,4,5-trisphosphate or cyclic ADP-ribose resulted in self-inactivation. When NAADP was released first locally and subsequently globally, the spatial pattern of the first response shaped that of the second. Specifically, the local release of NAADP created a Ca(2+) gradient that was reversed during the subsequent global release of NAADP. Neither cyclic ADP-ribose nor inositol 1,4,5-trisphosphate showed a similar effect. In contrast to homogenates, NAADP inactivation was reversible in intact eggs with resensitization occurring in approximately 20 min. Because initial NAADP responses affect later responses, NAADP can serve as a mechanism for a Ca(2+) memory that has both spatial and temporal components. This NAADP-mediated Ca(2+) memory provides a novel mechanism for cells to control spatiotemporal Ca(2+) increases.  相似文献   

10.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an agonist-generated second messenger that releases Ca(2+) from intracellular acidic Ca(2+) stores. Recent evidence has identified the two-pore channels (TPCs) within the endolysosomal system as NAADP-regulated Ca(2+) channels that release organellar Ca(2+) in response to NAADP. However, little is known about the mechanism coupling NAADP binding to calcium release. To identify the NAADP binding site, we employed a photoaffinity labeling method using a radioactive photoprobe based on 5-azido-NAADP ([(32)P-5N(3)]NAADP) that exhibits high affinity binding to NAADP receptors. In several systems that are widely used for studying NAADP-evoked Ca(2+) signaling, including sea urchin eggs, human cell lines (HEK293, SKBR3), and mouse pancreas, 5N(3)-NAADP selectively labeled low molecular weight sites that exhibited the diagnostic pharmacology of NAADP-sensitive Ca(2+) release. Surprisingly, we were unable to demonstrate labeling of endogenous, or overexpressed, TPCs. Furthermore, labeling of high affinity NAADP binding sites was preserved in pancreatic samples from TPC1 and TPC2 knock-out mice. These photolabeling data suggest that an accessory component within a larger TPC complex is responsible for binding NAADP that is unique from the core channel itself. This observation necessitates critical evaluation of current models of NAADP-triggered activation of the TPC family.  相似文献   

11.
The signaling pathway by which insulin stimulates insulin secretion and increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in isolated mouse pancreatic beta-cells and clonal beta-cells was investigated. Application of insulin to single beta-cells resulted in increases in [Ca(2+)](i) that were of lower magnitude, slower onset, and longer lifetime than that observed with stimulation with tolbutamide. Furthermore, the increases in [Ca(2+)](i) originated from interior regions of the cell rather than from the plasma membrane as with depolarizing stimuli. The insulin-induced [Ca(2+)](i) changes and insulin secretion at single beta-cells were abolished by treatment with 100 nm wortmannin or 1 micrometer thapsigargin; however, they were unaffected by 10 micrometer U73122, 20 micrometer nifedipine, or removal of Ca(2+) from the medium. Insulin-stimulated insulin secretion was also abolished by treatment with 2 micrometer bisindolylmaleimide I, but [Ca(2+)](i) changes were unaffected. In an insulin receptor substrate-1 gene disrupted beta-cell tumor line, insulin did not evoke either [Ca(2+)](i) changes or insulin secretion. The data suggest that autocrine-activated increases in [Ca(2+)](i) are due to release of intracellular Ca(2+) stores, especially the endoplasmic reticulum, mediated by insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Autocrine activation of insulin secretion is mediated by the increase in [Ca(2+)](i) and activation of protein kinase C.  相似文献   

12.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing messenger that in many cells releases Ca(2+) from the endolysosomal system. Recent studies have shown that NAADP-induced Ca(2+) mobilization is mediated by the two-pore channels (TPCs). Whether NAADP acts as a messenger in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that intracellular delivery of NAADP evokes Ca(2+) signals from acidic organelles in rat astrocytes and that these signals are potentiated upon overexpression of TPCs. We also show that NAADP increases acidic vesicular organelle formation and levels of the autophagic markers, LC3II and beclin-1. NAADP-mediated increases in LC3II levels were reduced in cells expressing a dominant-negative TPC2 construct. Our data provide evidence that NAADP-evoked Ca(2+) signals mediated by TPCs regulate autophagy.  相似文献   

13.
Glucose stimulation of pancreatic beta cells induces oscillations of the membrane potential, cytosolic Ca(2+) ([Ca(2+)](i)), and insulin secretion. Each of these events depends on glucose metabolism. Both intrinsic oscillations of metabolism and repetitive activation of mitochondrial dehydrogenases by Ca(2+) have been suggested to be decisive for this oscillatory behavior. Among these dehydrogenases, mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key enzyme of the glycerol phosphate NADH shuttle, is activated by cytosolic [Ca(2+)](i). In the present study, we compared different types of oscillations in beta cells from wild-type and mGPDH(-/-) mice. In clusters of 5-30 islet cells and in intact islets, 15 mM glucose induced an initial drop of [Ca(2+)](i), followed by an increase in three phases: a marked initial rise, a partial decrease with rapid oscillations and eventually large and slow oscillations. These changes, in particular the frequency of the oscillations and the magnitude of the [Ca(2+)] rise, were similar in wild-type and mGPDH(-/-) mice. Glucose-induced electrical activity (oscillations of the membrane potential with bursts of action potentials) was not altered in mGPDH(-/-) beta cells. In single islets from either type of mouse, insulin secretion strictly followed the changes in [Ca(2+)](i) during imposed oscillations induced by pulses of high K(+) or glucose and during the biphasic elevation induced by sustained stimulation with glucose. An imposed and controlled rise of [Ca(2+)](i) in beta cells similarly increased NAD(P)H fluorescence in control and mGDPH(-/-) islets. Inhibition of the malate-aspartate NADH shuttle with aminooxyacetate only had minor effects in control islets but abolished the electrical, [Ca(2+)](i) and secretory responses in mGPDH(-/-) islets. The results show that the two distinct NADH shuttles play an important but at least partially redundant role in glucose-induced insulin secretion. The oscillatory behavior of beta cells does not depend on the functioning of mGPDH and on metabolic oscillations that would be generated by cyclic activation of this enzyme by Ca(2+).  相似文献   

14.
In pancreatic acinar cells hormonal stimulation leads to a cytosolic Ca(2+) wave that starts in the apical cell pole and subsequently propagates toward the basal cell side. We used permeabilized pancreatic acinar cells from mouse and the mag-fura-2 technique, which allows direct monitoring of changes in [Ca(2+)] of intracellular stores. We show here that Ca(2+) can be released from stores in all cellular regions by inositol 1,4,5-trisphosphate. Stores at the apical cell pole showed a higher affinity to inositol 1,4,5-trisphosphate (EC(50) = 89 nm) than those at the basolateral side (EC(50) = 256 nm). In contrast, cADP-ribose, a modifier of Ca(2+)-induced Ca(2+) release, and nicotinic acid adenine dinucleotide phosphate (NAADP) were able to release Ca(2+) exclusively from intracellular stores located at the basolateral cell side. Our data agree with observations that upon stimulation Ca(2+) is released initially at the apical cell side and that this is caused by high affinity inositol 1,4,5-trisphosphate receptors. Moreover, our findings allow the conclusion that in Ca(2+) wave propagation from the apical to the basolateral cell side observed in pancreatic acinar cells Ca(2+)-induced Ca(2+) release, modulated by cADP-ribose and/or NAADP, might be involved.  相似文献   

15.
We have studied the Ca(2+) leak pathways in the endoplasmic reticulum of pancreatic acinar cells by directly measuring Ca(2+) in the endoplasmic reticulum ([Ca(2+)](ER)). Cytosolic Ca(2+) ([Ca(2+)](C)) was clamped to the resting level by a BAPTA-Ca(2+) mixture. Administration of cholecystokinin within the physiological concentration range caused a graded decrease of [Ca(2+)](ER), and the rate of Ca(2+) release generated by 10 pm cholecystokinin is at least 3x as fast as the basal Ca(2+) leak revealed by inhibition of the endoplasmic reticulum Ca(2+)-ATPase. Acetylcholine also evokes a dose-dependent decrease of [Ca(2+)](ER), with an EC(50) of 0.98 +/- 0.06 microm. Inhibition of receptors for inositol 1,4,5-trisphosphate (IP(3)) by heparin or flunarizine blocks the effect of acetylcholine but only partly blocks the effect of cholecystokinin. 8-NH(2) cyclic ADP-ribose (20 microm) inhibits the action of cholecystokinin, but not of acetylcholine(.) The basal Ca(2+) leak from the endoplasmic reticulum is not blocked by antagonists of the IP(3) receptor, the ryanodine receptor, or the receptor for nicotinic acid adenine dinucleotide phosphate. However, treatment with puromycin (0.1-1 mm) to remove nascent polypeptides from ribosomes increases Ca(2+) leak from the endoplasmic reticulum by a mechanism independent of the endoplasmic reticulum Ca(2+) pumps and of the receptors for IP(3) or ryanodine.  相似文献   

16.
Cytoplasmic Ca(2+) ([Ca(2+)](i)) and membrane potential changes were measured in clonal pancreatic beta cells using a fluorimetric imaging plate reader (FLIPR). KCl (30 mM) produced a fast membrane depolarization immediately followed by increase of [Ca(2+)](i) in BRIN-BD11 cells. l-Alanine (10 mM) but not l-arginine (10 mM) mimicked the KCl profile and also produced a fast membrane depolarization and elevation of [Ca(2+)](i). Conversely, a rise in glucose from 5.6 mM to 11.1 or 16.7 mM induced rapid membrane depolarization, followed by a slower and delayed increase of [Ca(2+)](i). GLP-1 (20 nM) did not affect membrane potential or [Ca(2+)](i). In contrast, acetylcholine (ACh, 100 microM) induced fast membrane depolarization immediately followed by a modest [Ca(2+)](i) increase. When extracellular Ca(2+) was buffered with EGTA, ACh mobilized intracellular calcium stores and the [Ca(2+)](i) increase was reduced by 2-aminoethoxydiphenyl borate but not by dantrolene, indicating the involvement of inositol triphosphate receptors (InsP(3)R). It is concluded that membrane depolarization of beta cells by glucose stimulation is not immediately followed by elevation of [Ca(2+)](i) and other metabolic events are involved in glucose induced stimulus-secretion coupling. It is also suggested that ACh mobilizes intracellular Ca(2+) through store operated InsP(3)R.  相似文献   

17.
In pancreatic acinar cells, inositol 1,4,5-trisphosphate (InsP(3))-dependent cytosolic calcium ([Ca(2+)](i)) increases resulting from agonist stimulation are initiated in an apical "trigger zone," where the vast majority of InsP(3) receptors (InsP(3)R) are localized. At threshold stimulation, [Ca(2+)](i) signals are confined to this region, whereas at concentrations of agonists that optimally evoke secretion, a global Ca(2+) wave results. Simple diffusion of Ca(2+) from the trigger zone is unlikely to account for a global [Ca(2+)](i) elevation. Furthermore, mitochondrial import has been reported to limit Ca(2+) diffusion from the trigger zone. As such, there is no consensus as to how local [Ca(2+)](i) signals become global responses. This study therefore investigated the mechanism responsible for these events. Agonist-evoked [Ca(2+)](i) oscillations were converted to sustained [Ca(2+)](i) increases after inhibition of mitochondrial Ca(2+) import. These [Ca(2+)](i) increases were dependent on Ca(2+) release from the endoplasmic reticulum and were blocked by 100 microM ryanodine. Similarly, "uncaging" of physiological [Ca(2+)](i) levels in whole-cell patch-clamped cells resulted in rapid activation of a Ca(2+)-activated current, the recovery of which was prolonged by inhibition of mitochondrial import. This effect was also abolished by ryanodine receptor (RyR) blockade. Photolysis of d-myo InsP(3) P(4(5))-1-(2-nitrophenyl)-ethyl ester (caged InsP(3)) produced either apically localized or global [Ca(2+)](i) increases in a dose-dependent manner, as visualized by digital imaging. Mitochondrial inhibition permitted apically localized increases to propagate throughout the cell as a wave, but this propagation was inhibited by ryanodine and was not seen for minimal control responses resembling [Ca(2+)](i) puffs. Global [Ca(2+)](i) rises initiated by InsP(3) were also reduced by ryanodine, limiting the increase to a region slightly larger than the trigger zone. These data suggest that, while Ca(2+) release is initially triggered through InsP(3)R, release by RyRs is the dominant mechanism for propagating global waves. In addition, mitochondrial Ca(2+) import controls the spread of Ca(2+) throughout acinar cells by modulating RyR activation.  相似文献   

18.
The neuropeptide gastrin releasing peptide (GRP) stimulates insulin secretion and induces oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) in clonal insulinoma cells. It is not known whether GRP affects [Ca(2+)](cyt) in normal beta cells. We investigated, in single, normal, mouse islet beta cells, the effects of GRP on [Ca(2+)](cyt), by dual wavelength spectrophotofluorometry. Beta cells were identified by their typical response to glucose or tolbutamide. At 15 mM glucose, GRP (100 nM) evoked an immediate [Ca(2+)](cyt) transient to 423 +/- 48 nM compared to 126 +/- 18 nM before GRP (P < 0.001). After the initial transient, [Ca(2+)](cyt) exhibited either a sustained elevation or oscillations. At 3.3 mM glucose, in cells with a non-oscillating [Ca(2+)](cyt), GRP stimulated a prompt increase in [Ca(2+)](cyt) (from 60 +/- 6 to 285 +/- 30 nM, P = 0.024) followed by either a sustained increase in [Ca(2+)](cyt) or [Ca(2+)](cyt) oscillations. We conclude that GRP promptly elevates [Ca(2+)](cyt) by a direct action in normal mouse pancreatic beta cells.  相似文献   

19.
The release of sPLA(2) from single mouse pancreatic beta-cells was monitored using a fluorescent substrate of the enzyme incorporated in the outer leaflet of the plasma membrane. Stimulation of beta-cells with agents that increased cytosolic free Ca(2+) concentration ([Ca(2+)](i)) induced a rapid release of sPLA(2) to the extracellular medium. Exogenous sPLA(2) strongly stimulated insulin secretion in mouse pancreatic islets at both basal and elevated glucose concentrations. The stimulation of insulin secretion by sPLA(2) was mediated via inhibition of ATP-dependent K(+) channels and an increase in [Ca(2+)](i). Measurements of cell capacitance in single beta-cells revealed that sPLA(2) did not modify depolarisation-induced exocytosis. Our data suggest that a positive feedback regulation of insulin secretion by co-released sPLA(2) is operational in pancreatic beta-cells and point to this enzyme as an autocrine regulator of insulin secretion.  相似文献   

20.
This study was undertaken to examine the role of K(+) channels on cytosolic Ca(2+) ([Ca(2+)](i)) in insulin secreting cells. [Ca(2+)](i) was measured in single glucose-responsive INS-1 cells using the fluorescent Ca(2+) indicator Fura-2. Glucose, tolbutamide and forskolin elevated [Ca(2+)](i) and induced [Ca(2+)] oscillations. Whereas the glucose effect was delayed and observed in 60% and 93% of the cells, in a poorly and a highly glucose-responsive INS-1 cell clone, respectively, tolbutamide and forskolin increased [Ca(2+)](i) in all cells tested. In the latter clone, glucose induced [Ca(2+)](i) oscillations in 77% of the cells. In 16% of the cells a sustained rise of [Ca(2+)](i) was observed. The increase in [Ca(2+)](i) was reversed by verapamil, an L-type Ca(2+) channel inhibitor. Adrenaline decreased [Ca(2+)](i) in oscillating cells in the presence of low glucose and in cells stimulated by glucose alone or in combination with tolbutamide and forskolin. Adrenaline did not lower [Ca(2+)](i) in the presence of 30mM extracellular K(+), indicating that adrenaline does not exert a direct effect on Ca(2+) channels but increases K(+) channel activity. As for primary b-cells, [Ca(2+)](i) oscillations persisted in the presence of closed K(ATP) channels; these also persisted in the presence of thapsigargin, which blocks Ca(2+) uptake into Ca(2+) stores. In contrast, in voltage-clamped cells and in the presence of diazoxide (50mM), which hyperpolarizes the cells by opening K(ATP) channels, [Ca(2+)](i) oscillations were abolished. These results support the hypothesis that [Ca(2+)](i) oscillations depend on functional voltage-dependent Ca(2+) and K(+) channels and are interrupted by a hyperpolarization in insulin-secreting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号