首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The batch fermentations were conducted using lactose as the substrate at pH 6.5 and temperature 30°C. Average batch kinetic data was eventually used to develop an unstructured mathematical model. The kinetic parameters of the model were determined by non-linear regression technique using the batch experimental results. Parametric sensitivity analysis showed the maximum specific substrate consumption rate (rSmax) and the maintenance energy constant (mS) to be the most sensitive parameters. The experimental observations in batch fermentation were close to the model predictions. The batch model was extrapolated to identify nutrient feeding strategies, which were tested successfully for two different fed-batch fermentations. It demonstrated enhanced propionic acid productivity. The developed model was found suitable for the design of feeding strategies to increase propionic acid production in fed-batch mode of reactor operation.  相似文献   

2.
Cells of the propionate-tolerant strain Propionibacterium acidipropionici P200910, immobilized in calcium alginate beads, were tested for propionic and acetic acid production both in a semidefined laboratory medium and in corn steep liquor in batch, fed-batch, and continuous fermentation. Cell density was about 9.8 × 109 cells/g (wet weight) of beads, and beads were added to the medium at 0.1 g (wet weight) beads/ml. Beads could be reused for several consecutive batch fermentations; propionic acid production in the tenth cycle was about 50%–70% of that in the first cycle. In batch culture complete substrate consumption (glucose in semidefined medium, lactate in corn steep liquor) and maximum acid production were seen within 36 h, and acid yields from the substrate were higher than in free-cell fermentations. Fed-batch fermentations were incubated up to 250 h. Maximum propionic acid concentrations obtained were 45.6 g/l in corn steep liquor and 57 g/l in semidefined medium; this is the highest concentration achieved to date in our laboratory. Maximum acetic acid concentrations were 17 g/l and 12 g/l, respectively. In continuous fermentation of semidefined medium, dilution rates up to 0.31 h–1 could be used, which gave higher volumetric productivities (0.96 g l–1 h–1 for propionic acid and 0.26 g l–1 h–1 for acetic acid) than we have obtained with free cells. Corn steep liquor shows promise as an inexpensive medium for production of both acids by immobilized cells of propionibacteria.Journal paper no. J- 15614 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project no. 3122  相似文献   

3.
Summary A growth associated formation of extracellular 5-aminolevulinic acid (ALA) was found in the homoacetogenesis of glucose byClostridium thermoaceticum grown in minimal defined medium. The growth and ALA production was enhanced by L-cysteine HCl both in complex medium (UM) and minimal defined medium (MDM). The amount of ALA produced extracellularly in MDM wasca. 15 mg/L after 90-h anaerobic cultivation (cell-mass: 1.5 g/l; glucose consumed: 20 g/l).  相似文献   

4.
Propionic acid is an important chemical that is widely used in the food and chemical industries. To enhance propionic acid production, a fibrous-bed bioreactor (FBB) was constructed and Jerusalem artichoke hydrolysate was used as a low-cost renewable feedstock for immobilized fermentation. Comparison of the kinetics of immobilized-cell fermentation using the FBB with those of fed-batch free-cell fermentation showed that immobilized-cell fermentation gave a much higher propionic acid concentration (68.5 vs. 40.6 g/L), propionic acid yield (0.434 vs. 0.379 g/g) and propionic acid productivity (1.55 vs. 0.190 g/L/h) at pH 6.5. Furthermore, repeated batch fermentation, carried out to evaluate the stability of the FBB system, showed that long-term operation with a high average propionic acid yield of 0.483 g/g, high productivity of 3.69 g/L/h and propionic acid concentration of 26.2 g/L were achieved in all eight repeated batches during fermentation for more than 200 h. It is thus concluded that the FBB culture system can be utilized to realize the economical production of propionic acid from Jerusalem artichoke hydrolysate during long-term operation.  相似文献   

5.
6.
Continuous propionic acid fermentations of lactate by Propionibacterium acidipropionici were studied in spiral wound fibrous bed bioreactors. Cells were imobilized by natural attachment to fiber surfaces and entrapment in the void volume within the fibrous matrix. A high cell density of approximately 37 g/L was attained in the reactor and the reactor productivity was approximately 4 times higher than that from a conventional batch fermentation. The bioreactor was able to operate continuously for 4 months without encountering any clogging, degeneration, or contamination problems. Also, the reactor could accept low-nutrient and low-pH feed without sacrificing much in reactor productivity. This new type of immobilized cell bioreactor is scalable and thus is suitable for industrial production of propionate. (c) 1992 John Wiley & Sons, Inc.  相似文献   

7.
A mathematical model was developed that describes production of propionic acid by fermentation of sweet whey with Propionibacterium acidipropionici immobilized in calcium polygalacturonate beads in a fermentor-type stirred tank. This mathematical model is constituted by a partial differential equations system, which fits consumption, production, growth and internal diffusion rates in the support. Fermentation was experimentally studied with free cells and immobilized cells, effective diffusivities of lactose and propionic acid were estimated in the support, and typical parameters of the model were obtained by nonlinear regression of the experimental data. The variance analysis shows that the combination of micro(max) and K(d) parameters is the source of variation most significative, also they were found to be the most sensitive parameters of the model. Finally, an effectiveness factor was calculated in order to assess the effect of mass transfer on the overall reaction rate observed.  相似文献   

8.
Summary Batch propionic acid fermentations by Propionibacterium acidipropionici with lactose, glucose, and lactate as the carbon source were studied. In addition to propionic acid, acetic acid, succinic acid and CO2 were also formed from lactose or glucose. However, succinic acid was not produced in a significant amount when lactate was the growth substrate. Compared to fermentations with lactose or glucose at the same pH, lactate gave a higher propionic acid yield, lower cell yield, and lower specific growth rate. The specific fermentation or propionic acid production rate from lactate was, however, higher than that from lactose. Since about equimolar acid products would be formed from lactate, the reactor pH remained relatively unchanged throughout the fermentation and would be easier to control when lactate was the growth substrate. Therefore, lactate would be a preferred substrate over lactose and glucose for propionic acid production using continuous, immobilized cell bioreactors. Correspondence to: S. T. Yang  相似文献   

9.
Several promoters from Propionibacterium freudenreichii subsp. shermanii were isolated using a promoter probe vector, pCVE1, containing the Streptomyces cholesterol oxidase gene (choA) as a reporter gene. Three of four promoters isolated exhibiting a strong activity in Escherichia coli also expressed a strong activity in P. freudenreichii subsp. shermanii IFO12426. Using two promoters with a strong activity and a previously constructed shuttle vector, pPK705, shuttling between E. coli and Propionibacterium. we constructed expression vectors for propionibacteria. To overproduce 5-aminolevulinic acid (ALA), which is the first intermediate in the synthesis of porphyrins, the ALA synthase gene (hemA) from Rhodobacter sphaeroides was recombined with the expression vectors. The activity of ALA synthase in the recombinant P freudenreichii subsp. shermanii increased about 70-fold that in the strain without a vector. The recombinant Propionibacterium produced ALA at a maximum concentration of 8.6 mM in the absence of levulinic acid, an inhibitor of ALA dehydratase, with 1% glucose as a carbon source. The recombinant P. freudenreichii accumulated 18.8 mmol/g cells ALA in the presence of 1 mM levulinic acid and 30 mM glycine. The construction of an efficient expression vector will facilitate genetic studies of a vitamin B12 producer, Propionibacterium.  相似文献   

10.
Fed-batch fermentations of glucose by P. acidipropionici ATCC 4875 in free-cell suspension culture and immobilized in a fibrous-bed bioreactor (FBB) were studied. The latter produced a much higher propionic acid concentration (71.8 +/- 0.8 g/L vs. 52.2 +/- 1.1 g/L), indicating enhanced tolerance to propionic acid inhibition by cells adapted in the FBB. Compared to the free-cell fermentation, the FBB culture produced 20-59% more propionate (0.40-0.65 +/- 0.02 g/g vs. 0.41 +/- 0.02 g/g), 17% less acetate (0.10 +/- 0.01 g/g vs. 0.12 +/- 0.02 g/g), and 50% less succinate (0.09 +/- 0.02 g/g vs. 0.18 +/- 0.03 g/g) from glucose. The higher propionate production in the FBB was attributed to mutations in two key enzymes, oxaloacetate transcarboxylase and propionyl CoA: succinyl CoA transferase, leading to the production of propionic acid from pyruvate. Both showed higher specific activity and lower sensitivity to propionic acid inhibition in the mutant than in the wild type. In contrast, the activity of PEP carboxylase, which converts PEP directly to oxaloacetate and leads to the production of succinate from glucose, was generally lower in the mutant than in the wild type. For phosphotransacetylase and acetate kinase in the acetate formation pathway, however, there was no significant difference between the mutant and the wild type. In addition, the mutant had a striking change in its morphology. With a threefold increase in its length and approximately 24% decrease in its diameter, the mutant cell had an approximately 10% higher specific surface area that should have made the mutant more efficient in transporting substrates and metabolites across the cell membrane. A slightly lower membrane-bound ATPase activity found in the mutant also indicated that the mutant might have a more efficient proton pump to allow it to better tolerate propionic acid. In addition, the mutant had more longer-chain saturated fatty acids (C17:0) and less unsaturated fatty acids (C18:1), both of which could decrease membrane fluidity and might have contributed to the increased propionate tolerance. The enhanced propionic acid production from glucose by P. acidipropionici was thus attributed to both a high viable cell density maintained in the reactor and favorable mutations resulted from adaptation by cell immobilization in the FBB.  相似文献   

11.
Batch propionic acid fermentation of lactose by Propionibacterium acidipropionici were studied at various pH values ranging from 4.5 to 7.12. The optimum pH range for cell growth was between 6.0 and 7.1, where the specific growth rate was approximately 0.23 h(-1). The specific growth rate decreased with the pH in the acids have been identified as the two major fermentation products from lactose. The production of propionic acid was both growth and nongrowth associated, while acetic acid formation was closely associated with cell growth. The propionic acid yield increased with decreasing pH; It changed from approximately 33% (w/w) at pH 6.1-7.1 to approximately 63% at pH 4.5-5.0. In contrast, the acetic acid yield was not significantly affected by the pH; it remained within the range of 9%-12% at all pH values. Significant amounts of succinic and pyruvic acids were also formed during propionic acid fermentation of lactose. However, pyruvic acid was reconsumed and disappeared toward the end of the fermentation. The succinic acid yield generally decreased with the pH, from a high value of 17% at pH 7.0 to a low 8% at pH 5.0 Effects of growth nutrients present in yeast ex-tract on the fermentation were also studied. In general, the same trend of pH effects was found for fermentations with media containing 5 to 10 g/L yeast extract. However, More growth nutrients would be required for fermentations to be carried out efficienytly at acidic pH levels.  相似文献   

12.
A comparative study was carried out in anaerobic batch cultures on 20 g/l of either glycerol or glucose using two propionibacteria strains, Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. In all cases, fermentation end-products were the same and consisted of propionic acid as the major product, acetic acid as the main by-product and two minor metabolites, n-propanol and succinic acid. Evidence was provided that greater production of propionic acid by propionibacteria was obtained with glycerol as carbon and energy sources. P. acidipropionici showed higher efficiency in glycerol conversion to propionic acid with a faster substrate consumption (0.64 g l−1 h−1) and a higher propionic acid production (0.42 g l−1 h−1 and 0.79 mol/mol). The almost exclusive production of propionic acid from glycerol by this bacterium suggested an homopropionic tendency of this fermentation. Acetic acid final concentration was two times lower on glycerol (2 g/l) than on glucose (4 g/l) for both micro-organisms. P. freudenreichii ssp. shermanii exhibited a glycerol fermentation pattern typical of non-associated glycerol-consumption-product formation. This could indicate a particular metabolism for P. freudenreichii ssp. shermanii oriented towards the production of other specific components. These results tend to show that glycerol could be an excellent alternative to conventional carbon sources such as carbohydrates for propionic acid production. Received: 21 May 1999 / Accepted: 1 November 1999  相似文献   

13.
To improve the fermentation efficiency of Propionibacterium acidipropionici, a semi‐continuous coupled fermentation process was established to achieve co‐production of propionic acid (PA) and succinic acid (SA). First, the optimal proportion of glucose (Glc) and glycerol (Gl) as a mixed carbon source was determined, and the feeding procedure of Gl was optimized to make more energy flow in the direction of product synthesis. Then, ZGD630 anion exchange resin was used for efficient adsorption of PA, thereby eliminating the feedback inhibition effect of PA. Finally, an efficient, coupled fermentation process of P. acidipropionici characterized by membrane separation and chromatography technology was developed. The concentrations of PA and SA reached 62.22 ± 2.32 and 20.45 ± 1.34 g L−1, with corresponding productivity of 0.43 and 0.14 g L−1 h−1, increased by 65.38% and 48.54%, respectively. Membrane separation coupled fermentation of PA and SA could significantly improve the process economics of P. acidipropionici, and has good prospects for industrial application.  相似文献   

14.
5-氨基乙酰丙酸是生物体内吡咯生物合成途径的关键中间产物,具有广泛的应用前景。文中从三方面归纳了国内外关于5-氨基乙酰丙酸的最新研究进展:生产5-氨基乙酰丙酸的微生物筛选分离与诱变;基于C4途径的微生物全细胞生物转化合成5-氨基乙酰丙酸;基于微生物代谢工程改造构建高产5-氨基乙酰丙酸的工程菌株。最后,预测了未来5-氨基乙酰丙酸的研究方向和焦点。  相似文献   

15.
论文在摇瓶水平对产酸丙酸杆菌基本生长特性(温度、pH、摇床转速、接种量、种龄等)、碳源、氮源利用情况、产物抑制及5 L罐发酵动力学进行了研究。结果表明,该菌在32℃,初始pH 6.5,摇床转速150 r/min,接种24 h的种子液,接种量为5%条件下,产酸丙酸杆菌生长及产酸水平达最高值;该菌可利用碳源十分广泛,但对氮源要求比较高,只可利用有机氮源;在不同初始葡萄糖浓度下,产酸丙酸杆菌生长及产酸水平差异不大,无明显底物抑制现象;在2g/L的初始丙酸盐浓度下,该菌生长受到明显抑制;在5L发酵罐中,初始葡萄糖浓度为58.8 g/L,发酵72 h,葡萄糖消耗完全,丙酸终浓度达22.4 g/L,丙酸得率和产率分别达0.381 g/g和0.295 g/(L·h),丙酸占总酸比例达72.10%。  相似文献   

16.
5-Aminolevulinic acid (ALA), an important intermediate in tetrapyrrole biosynthesis in organisms, has been widely applied in many fields, such as medicine, agriculture, and the food industry, due to its biochemical characteristics. Research efforts supporting the microbial production of ALA have received increasing interest due to its dominant advantages over chemical synthesis, including higher yields, lesser pollutant emissions, and a lesser monetary cost. ALA synthesis using photosynthetic bacteria (PSB) is a promising approach in various microbial synthesis methods. In this review, recent advances on the microbial production of ALA with an emphasis on PSB are summarized, the key enzymes in the biosynthesis pathway (especially the relationship between key enzymes and key genes) are detailed, regulation strategies are described, and the significant influencing factors on the ALA biosynthesis and application of ALA are outlined. Furthermore, the eco-friendly perspective involving the combination of wastewater treatment and microbial production of ALA is conceived.  相似文献   

17.
Kang Z  Wang Y  Wang Q  Qi Q 《Bioengineered bugs》2011,2(6):342-345
5-Aminolevulinic acid (ALA) has recently attracted significant attentions due to its potential applications in many diverse fields. The majority of engineered ALA producers are based on the whole cell catalysis, supplemented with succinate and glycine as precursors. Recently, we succeeded in producing ALA directly from inexpensive glucose, through re-constructing the native C5 pathway of ALA synthesis in Escherichia coli. Herein, we further discuss ALA production by manipulating the C5 and C4 pathways in Escherichia coli through the strategy of metabolic engineering.  相似文献   

18.
To produce propionic acid and vitamin B12 from sucrose, the strain Propionibacterium acidipropionici NRRL B3569 was selected by screening a number of Propionibacterium strains. The nutrient composition and the fermentation conditions for this strain were optimized in continuous culture. The investigations show that within a concentration range of 30–170 g l–1 of sucrose in the fermentation medium, no significant substrate inhibition occurred. For the production of propionic acid and vitamin B12, concentrations of 1.5 mg FeSO4·7H2O g–1 dry biomass, 0.75 mg cobalt ions g–1 dry biomass, 0.3 mg 5,6-dimethylbenzimidazole g–1 dry biomass, and 12 g yeast extract 1–1 were necessary additions to the sources of nitrogen, phosphate, and magnesium ions. The extra addition of up to 2.8 g betaine g–1 dry biomass significantly increases the production of vitamin B12. In the optimization of the pH value, temperature, and aeration, it was established that the conditions for propionic acid production and vitamin B12 production are different. Whereas the optimal production of propionic acid took place under completely anaerobic conditions with a pH value of 6.5 and a temperature of 37°C, optimal vitamin B12 production required a temperature of 40°C and aerobic conditions (0.5 vvm aeration at 100 rpm) with a pH value of 6.5.  相似文献   

19.
20.
Summary Interferon, produced by rabbit heart cells grown in a serum-free medium, failed to protect rabbit heart serum-free cells, but protected rabbit heart serum-containing-medium cells against vaccinia and vesicular stomatitis virus. Interferon produced in serum-free cells had a greater species specificity than that produced in serum-containing media. The difference in activity was shown to be due to lack of adsorption by serum-free-medium cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号