首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Huang Z  Chen K  Xu T  Zhang J  Li Y  Li W  Agarwal AK  Clark AM  Phillips JD  Pan X 《Eukaryotic cell》2011,10(11):1536-1544
The azaoxoaporphine alkaloid sampangine exhibits strong antiproliferation activity in various organisms. Previous studies suggested that it somehow affects heme metabolism and stimulates production of reactive oxygen species (ROS). In this study, we show that inhibition of heme biosynthesis is the primary mechanism of action by sampangine and that increases in the levels of reactive oxygen species are secondary to heme deficiency. We directly demonstrate that sampangine inhibits heme synthesis in the yeast Saccharomyces cerevisiae. It also causes accumulation of uroporphyrinogen and its decarboxylated derivatives, intermediate products of the heme biosynthesis pathway. Our results also suggest that sampangine likely works through an unusual mechanism-by hyperactivating uroporhyrinogen III synthase-to inhibit heme biosynthesis. We also show that the inhibitory effect of sampangine on heme synthesis is conserved in human cells. This study also reveals a surprising essential role for the interaction between the mitochondrial ATP synthase and the electron transport chain.  相似文献   

2.
Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex.  相似文献   

3.
Blood-feeding organisms digest hemoglobin, releasing large quantities of heme inside their digestive tracts. Free heme is very toxic, and these organisms have evolved several mechanisms to protect against its deleterious effects. One of these adaptations is the crystallization of heme into the dark-brown pigment hemozoin (Hz). Here we review the process of Hz formation, focusing on organisms other than Plasmodium that have contributed to a better understanding of heme crystallization. Hemozoin has been found in several distinct classes of organisms including protozoa, helminths and insects and Hz formation is the predominant form of heme detoxification. The available evidence indicates that amphiphilic structures such as phospholipid membranes and lipid droplets accompanied by specific proteins play a major role in heme crystallization. Because this process is specific to a number of blood-feeding organisms and absent in their hosts, Hz formation is an attractive target for the development of novel drugs to control illnesses associated with these hematophagous organisms.  相似文献   

4.
Bhakta MN  Wilks A 《Biochemistry》2006,45(38):11642-11649
The opportunistic pathogen Pseudomonas aeruginosa has evolved two outer membrane receptor-mediated uptake systems (encoded by the phu and has operons) by which it can utilize the hosts heme and hemeproteins as a source of iron. PhuS is a cytoplasmic heme binding protein encoded within the phu operon and has previously been shown to function in the trafficking of heme to the iron-regulated heme oxygenase (pa-HO). While the heme association rate for PhuS was similar to that of myoglobin, a markedly higher rate of heme dissociation (approximately 10(5) s(-1)) was observed, in keeping with a function in heme-trafficking. Additionally, the transfer of heme from PhuS to pa-HO was shown to be specific and unidirectional when compared to transfer to the non-iron regulated heme oxygenase (BphO), in which heme distribution between the two proteins merely reflects their relative intrinsic affinities for heme. Furthermore, the rate of transfer of heme from holo-PhuS to pa-HO of 0.11 +/- 0.01 s(-1) is 30-fold faster than that to apo-myoglobin, despite the significant higher binding affinity of apo-myoglobin for heme (kH = 1.3 x 10(-8) microM) than that of PhuS (0.2 microM). This data suggests that heme transfer to pa-HO is independent of heme affinity and is consistent with temperature dependence studies which indicate the reaction is driven by a negative entropic contribution, typical of an ordered transition state, and supports the notion that heme transfer from PhuS to pa-HO is mediated via a specific protein-protein interaction. In addition, pH studies, and reactions conducted in the presence of cyanide, suggest the involvement of spin transition during the heme transfer process, whereby the heme undergoes spin change from 6-c LS to 6-c HS either in PhuS or pa-HO. On the basis of the magnitudes of the activation parameters obtained in the presence of cyanide, whereby both complexes are maintained in a 6-c LS state, and the biphasic kinetics of heme transfer from holo-PhuS to pa-HO-wt, supports the notion that the spin-state crossover occur within holo-PhuS prior to the heme transfer step. Alternatively, the lack of the biphasic kinetic with pa-HO-G125V, 6-c LS, and with comparable rate of heme transfer as pa-HO is supportive of a mechanism in which the spin-change could occur within pa-HO. The present data suggests either or both of the two pathways proposed for heme transfer may occur under the present experimental conditions. The dissection of which pathway is physiologically relevant is the focus of ongoing studies.  相似文献   

5.
The uptake and utilization of heme as an iron source is a receptor-mediated process in bacterial pathogens and involves a number of proteins required for internalization and degradation of heme. In the following report we provide the first in-depth spectroscopic and functional characterization of a cytoplasmic heme-binding protein PhuS from the opportunistic pathogen Pseudomonas aeruginosa. Spectroscopic characterization of the heme-PhuS complex at neutral pH indicates that the heme is predominantly six-coordinate low spin. However, the resonance Raman spectra and global fit analysis of the UV-visible spectra show that at all pH values between 6 and 10 three distinct species are present to varying degrees. The distribution of the heme across multiple spin states and coordination number highlights the flexibility of the heme environment. We provide further evidence that the cytoplasmic heme-binding proteins, contrary to previous reports, are not heme oxygenases. The degradation of the heme-PhuS complex in the presence of a reducing agent is a result of H2O2 formed by direct reduction of molecular oxygen and does not yield biliverdin. In contrast, the heme-PhuS complex is an intracellular heme trafficking protein that specifically transfers heme to the previously characterized iron-regulated heme oxygenase pa-HO. Surface plasmon resonance experiments confirm that the transfer of heme is driven by a specific protein-protein interaction. This data taken together with the spectroscopic characterization is consistent with a protein that functions to shuttle heme within the cell.  相似文献   

6.
Heme is the prosthetic group of many proteins that carry out a variety of key biological functions. In addition, for many pathogenic organisms, heme (acquired from the host) may constitute a very important source of iron. Organisms can meet their heme demands by taking it up from external sources, by producing the cofactor through a dedicated biosynthetic pathway, or both. Here we analyzed the distribution of proteins specifically involved in the processes of heme biosynthesis and heme uptake in 474 prokaryotic organisms. These data allowed us to identify which organisms are capable of performing none, one, or both processes, based on the similarity to known systems. Some specific instances where one or more proteins along the pathways had unusual modifications were singled out. For two key protein domains involved in heme uptake, we could build a series of structural models, which suggested possible alternative modes of heme binding. Future directions for experimental work are given.  相似文献   

7.
Lewin A  Hederstedt L 《FEBS letters》2006,580(22):5351-5356
The N- and C-terminal halves of the heme A synthase polypeptide of Bacillus subtilis, and many other organisms, are homologous. This indicates that these enzyme proteins originate from a tandem duplication and fusion event of a gene encoding a protein half as large. The ape1694 gene of the hyperthermophilic archaeon Aeropyrum pernix encodes a protein that is similar to the hypothetical small primordial protein. We demonstrate that this A. pernix protein is a heat-stable membrane bound heme A synthase designated cCtaA. The case of cCtaA is unusual in evolution in that the primordial-like protein has not become extinct and apparently carries out the same function as the twice as large more diversified heme A synthase protein variant found in most cytochrome a-containing organisms.  相似文献   

8.
Heme is an essential prosthetic group or substrate for many proteins, including hemoglobin, and hemo enzymes such as nitric oxide synthase, soluble guanylyl cyclase, and heme oxygenase (HO). HO is responsible for the breakdown of heme into equimolar amounts of biliverdin, iron, and carbon monoxide, the latter of which is thought to play a role in the regulation of vascular tone. It is not clear whether the source of heme for cardiovascular functions is derived from uptake from the extracellular milieu or synthesis. In this study, we tested the hypothesis that blood vessels obtain their supply of heme for HO through de novo synthesis. Adult male Sprague-Dawley rat aorta was incubated at 37 degrees C in Krebs' solution with 1 micro M [14C]delta-aminolevulinic acid (ALA). [14C]ALA uptake was linear for about 30 min and reached a plateau at approximately 100 min. The radioactivity was incorporated into porphyrins and heme as determined by esterification of 14C-labelled metabolites and thin-layer chromatography. The first and rate-limiting step of heme biosynthesis is catalyzed by ALA synthase (ALA-S), the activity of which was determined in rat aorta using a radiometric assay, approximately 250 nmol x (g wet mass)(-1) x h(-1). Inducing HO-1 in rat aorta with S-nitroso-N-acetylpenicillamine (500 micro M) did not increase ALA-S activity as compared with basal activity levels of the enzyme. It appears that there is a sufficient amount of heme available under basal ALA-S activity conditions to meet the increased demand for heme resulting from HO-1 induction. These observations indicate that the complete enzymatic pathway for de novo heme biosynthesis resides in rat aorta and furthermore indicate that de novo heme synthesis is capable of supplying a substantial portion of the heme substrate for HO in the aorta.  相似文献   

9.
Vibrio cholerae, the causative agent of cholera, requires iron for growth. One mechanism by which it acquires iron is the uptake of heme, and several heme utilization genes have been identified in V. cholerae. These include three distinct outer membrane receptors, two TonB systems, and an apparent ABC transporter to transfer heme across the inner membrane. However, little is known about the fate of the heme after it enters the cell. In this report we show that a novel heme utilization protein, HutZ, is required for optimal heme utilization. hutZ (open reading frame [ORF] VCA0907) is encoded with two other genes, hutW (ORF VCA0909) and hutX (ORF VCA0908), in an operon divergently transcribed from the tonB1 operon. A hutZ mutant grew poorly when heme was provided as the sole source of iron, and the poor growth was likely due to the failure to use heme efficiently as a source of iron, rather than to heme toxicity. Heme oxygenase mutants of both Corynebacterium diphtheriae and C. ulcerans fail to use heme as an iron source. When the hutWXZ genes were expressed in the heme oxygenase mutants, growth on heme was restored, and hutZ was required for this effect. Biochemical characterization indicated that HutZ binds heme with high efficiency; however, no heme oxygenase activity was detected for this protein. HutZ may act as a heme storage protein, and it may also function as a shuttle protein that increases the efficiency of heme trafficking from the membrane to heme-containing proteins.  相似文献   

10.
11.
The heme biosynthetic and catabolic pathways generate pro- and antioxidant compounds, and consequently, influence cellular sensitivity to oxidants. Heme precursors (delta-aminolevulinic acid, porphyrins) generate reactive oxygen species (ROS), from autoxidation and photochemical reactions, respectively. Heme, an essential iron chelate, serves in respiration, oxygen transport, detoxification, and signal transduction processes. The potential toxicity of heme and hemoproteins points to a critical role for heme degradation in cellular metabolism. The heme oxygenases (HOs) provide this function and participate in cellular defense. This hypothesis emerges from the observation that the activation of HO-1 is an ubiquitous cellular response to oxidative stress. The reaction products of HO activity, biliverdin, and its subsequent metabolite bilirubin, have antioxidant properties. Furthermore, iron released from HO activity stimulates ferritin synthesis, which ultimately provides an iron detoxification mechanism that may account for long-term cytoprotection observed after HO induction. However, such models have overlooked potential pro-oxidant consequences of HO activity. The HO reaction releases iron, which could be involved in deleterious reactions that compete with iron reutilization and sequestration pathways. Indeed, the induction of HO activity may have both pro- and antioxidant sequelae depending on cellular redox potential, and the metabolic fate of the heme iron.  相似文献   

12.
Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology.  相似文献   

13.
14.
The HY1 gene of Arabidopsis encodes a plastid heme oxygenase (AtHO1) required for the synthesis of the chromophore of the phytochrome family of plant photoreceptors. To determine the enzymatic properties of plant heme oxygenases, we have expressed the HY1 gene (without the plastid transit peptide) in Escherichia coli to produce an amino terminal fusion protein between AtHO1 and glutathione S-transferase. The fusion protein was soluble and expressed at high levels. Purified recombinant AtHO1, after glutathione S-transferase cleavage, is a hemoprotein that forms a 1:1 complex with heme. In the presence of reduced ferredoxin, AtHO1 catalyzed the formation of biliverdin IXalpha from heme with the concomitant production of carbon monoxide. Heme oxygenase activity could also be reconstituted using photoreduced ferredoxin generated through light irradiation of isolated thylakoid membranes, suggesting that ferredoxin may be the electron donor in vivo. In addition, AtHO1 required an iron chelator and second reductant, such as ascorbate, for full activity. These results show that the basic mechanism of heme cleavage has been conserved between plants and other organisms even though the function, subcellular localization, and cofactor requirements of heme oxygenases differ substantially.  相似文献   

15.
16.
Atteia A  van Lis R  Beale SI 《Eukaryotic cell》2005,4(12):2087-2097
Heme biosynthesis involves a number of enzymatic steps which in eukaryotes take place in different cell compartments. Enzyme compartmentalization differs between photosynthetic and nonphotosynthetic eukaryotes. Here we investigated the structures and subcellular localizations of three enzymes involved in the heme pathway in Polytomella sp., a colorless alga evolutionarily related to the green alga Chlamydomonas reinhardtii. Functional complementation of Escherichia coli mutant strains was used to isolate cDNAs encoding three heme biosynthetic enzymes, glutamate-1-semialdehyde aminotransferase, protoporphyrinogen IX oxidase, and ferrochelatase. All three proteins show highest similarity to their counterparts in photosynthetic organisms, including C. reinhardtii. All three proteins have N-terminal extensions suggestive of intracellular targeting, and immunoblot studies indicate their enrichment in a dense cell fraction that is enriched in amyloplasts. These results suggest that even though the plastids of Polytomella sp. are not photosynthetically active, they are the major site of heme biosynthesis. The presence of a gene for glutamate-1-semialdehyde aminotransferase suggests that Polytomella sp. uses the five-carbon pathway for synthesis of the heme precursor 5-aminolevulinic acid.  相似文献   

17.
Induction of hepatic heme oxygenase activity by bromobenzene   总被引:2,自引:0,他引:2  
Hepatic heme oxygenase, an enzyme which converts heme to carbon monoxide and bile pigment in vitro, is inducible by heme but also by large “toxic” doses of such nonheme substances as hormones, endotoxin, and heavy metal ions. When we gave rats a single hepatotoxic dose of allyl alcohol, ethionine, acetaminophen, furosemide, or endotoxin, hepatic heme oxygenase activity rose modestly (two- to fivefold) after 20 h. In contrast, administration of bromobenzene (5 mmol/kg) induced heme oxygenase in the liver an average of 15-fold after 20 h but was without effect on the enzyme in the kidney or spleen. The change in heme oxygenase was accompanied by a loss in cytochrome P-450 concentration and, in rats labeled with 5-δ-amino[14C]levulinic acid, an increased rate of degradation of hepatic [14C]heme to 14CO. Induction of heme oxygenase by bromobenzene was blocked by cycloheximide, an inhibitor of protein synthesis, but not by actinomycin D, an inhibitor of RNA synthesis. This suggests that bromobenzene stimulates de novo enzyme synthesis at the step of translation. Subtoxic doses of bromobenzene (less than 1 mmol/kg) gave proportionately greater induction of heme oxygenase. Furthermore, induction of the enzyme remained unaffected when bromobenzene hepatotoxicity was blocked by pretreatment of rats with SKF-525A, 3-methylcholanthrene, or cysteine (which supplements liver sulfhydryl content), or when hepatotoxicity was enhanced by pretreatment with phenobarbital or with diethylmaleate (which depletes hepatic glutathione). These data suggest that with induction of heme oxygenase by bromobenzene, neither liver cell necrosis nor alteration in hepatic sulfhydryl metabolism is indispensible. The latter characteristic differs from induction of the enzyme by metal ions in which depletion of sulfhydryl-containing constituents has been thought to be essential. We conclude that bromobenzene is a novel inducer of heme oxygenase activity in the liver, differing from other nonheme substances in potency and specificity for the liver, and in utilizing mechanism(s) which require neither production of hepatotoxicity, depletion of hepatic glutathione, nor sensitivity to actinomycin D.  相似文献   

18.
Release of hemoglobin into plasma is a physiological phenomenon associated with intravascular hemolysis. In plasma, stable haptoglobin-hemoglobin complexes are formed and these are subsequently delivered to the reticulo-endothelial system by CD163 receptor-mediated endocytosis. Heme arising from the degradation of hemoglobin, myoglobin, and of enzymes with heme prosthetic groups could be delivered in plasma. Albumin, haptoglobin, hemopexin, and high and low density lipoproteins cooperate to trap the plasma heme, thereby ensuring its complete clearance. Then hemopexin releases the heme into hepatic parenchymal cells only after internalization of the hemopexin-heme complex by CD91 receptor-mediated endocytosis. Moreover, alpha1-microglobulin contributes to heme degradation by a still unknown mechanism, with the concomitant formation of heterogeneous yellow-brown kynurenine-derived chromophores which are very tightly bound to amino acid residues close to the rim of the lipocalin pocket. During hemoglobin synthesis, the erythroid alpha-chain hemoglobin-stabilizing protein specifically binds free alpha-hemoglobin subunits limiting the free protein toxicity. Although highly toxic because capable of catalyzing free radical formation, heme is also a major and readily available source of iron for pathogenic organisms. Gram-negative bacteria pick up the heme-bound iron through the secretion of a hemophore that takes up either free heme or heme bound to heme-proteins and transports it to a specific receptor, which, in turn, releases the heme and hence iron into the bacterium. Here, hemoglobin and heme trapping mechanisms are summarized.  相似文献   

19.
The catabolism of heme is carried out by members of the heme oxygenase (HO) family. The products of heme catabolism by HO-1 are ferrous iron, biliverdin (subsequently converted to bilirubin), and carbon monoxide. In addition to its function in the recycling of hemoglobin iron, this microsomal enzyme has been shown to protect cells in various stress models. Implicit in the reports of HO-1 cytoprotection to date are its effects on the cellular handling of heme/iron. However, the limited amount of uncommitted heme in non-erythroid cells brings to question the source of substrate for this enzyme in non-hemolytic circumstances. In the present study, HO-1 was induced by either sodium arsenite (reactive oxygen species producer) or hemin or overexpressed in the murine macrophage-like cell line, RAW 264.7. Both of the inducers elicited an increase in active HO-1; however, only hemin exposure caused an increase in the synthesis rate of the iron storage protein, ferritin. This effect of hemin was the direct result of the liberation of iron from heme by HO. Cells stably overexpressing HO-1, although protected from oxidative stress, did not display elevated basal ferritin synthesis. However, these cells did exhibit an increase in ferritin synthesis, compared with untransfected controls, in response to hemin treatment, suggesting that heme levels, and not HO-1, limit cellular heme catabolism. Our results suggest that the protection of cells from oxidative insult afforded by HO-1 is not due to the catabolism of significant amounts of cellular heme as thought previously.  相似文献   

20.
Thyroperoxidase (TPO) is a glycosylated hemoprotein that plays a key role in thyroid hormone synthesis. We previously showed that in CHO cells expressing human TPO (hTPO) only 2% of synthesized hTPO reaches the cell surface. Herein, we investigated the role of heme moiety insertion in the exit of hTPO from the endoplasmic reticulum. Peroxidase activity at the cell surface and cell surface expression of hTPO were decreased by approximately 30 and approximately 80%, respectively, with succinyl acetone, an inhibitor of heme biosynthesis, and were increased by 20% with holotransferrin and aminolevulinic acid, precursors of heme biosynthesis. Results were similar with holotransferrin plus aminolevulinic acid or hemin, but hemin increased cell surface activity more efficiently (+120%) relative to the control. It had been suggested (DePillis, G., Ozaki, S., Kuo, J. M., Maltby, D. A., and Ortiz de Montellano, P. R. (1997) J. Biol. Chem. 272, 8857-8960) that covalent attachment of heme to mammalian peroxidases could be an H2O2-dependent autocatalytic processing. In our study, heme associated intracellularly with hTPO, and we hypothesized that there was insufficient exposure to H2O2 in Chinese hamster ovary cells before hTPO reached the cell surface. After a 10-min incubation, 10 microM H2O2 led to a 65% increase in cell surface activity. In contrast, in thyroid cells, H2O2 was synthesized at the apical cell surface and allowed covalent attachment of heme. Two-day incubation of primocultures of thyroid cells with catalase led to a 30% decrease in TPO activity at the cell surface. In conclusion, we provide compelling evidence for an essential role of 1) heme incorporation in the intracellular trafficking of hTPO and of 2) H2O2 generated at the apical pole of thyroid cells in the autocatalytic covalent heme binding to the TPO molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号