首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Imaging has long been one of the principal techniques used in biological and biomedical research. Indeed, the field of cell biology grew out of the first electron microscopy images of organelles in a cell. Since this landmark event, much work has been carried out to image and classify the organelles in eukaryotic cells using electron microscopy. Fluorescently labeled organelles can now be tracked in live cells, and recently, powerful light microscope techniques have pushed the limit of optical resolution to image single molecules. In this paper, we describe the use of soft X-ray tomography, a new tool for quantitative imaging of organelle structure and distribution in whole, fully hydrated eukaryotic Schizosaccharomyces pombe cells. In addition to imaging intact cells, soft X-ray tomography has the advantage of not requiring the use of any staining or fixation protocols—cells are simply transferred from their growth environment to a sample holder and immediately cryofixed. In this way the cells can be imaged in a near native state. Soft X-ray tomography is also capable of imaging relatively large numbers of cells in a short period of time, and is therefore a technique that has the potential to produce information on organelle morphology from statistically significant numbers of cells.  相似文献   

2.
The results of studies of mixed eukaryotic cell cultures are reviewed. Such cultures allowin vitro modeling of a broad spectrum of processes happening in a living organism, such as maintenance of homeostasis, differentiation during embryogenesis and ontogeny, different forms of pathology, interaction between normal and transformed cells, and establishment of immunity. Special attention is paid to cytotoxic processes arising in cocultures.  相似文献   

3.
Rapid patterning has been observed in confined 2-D cultures of Dictyostelium discoideum Ax-2 cells as an outer dark zone and a inner light zone. The width of outer zone was usually approximately100 microm, irrespective of the size of cell masses under atmospheric conditions. The width of the outer zone, however, changed depending on external O2 concentrations and reached up to 250 microm at 100% O2. A clear regional difference in tetramethyl rhodamine methyl ester (TMRM) staining was noticed between the outer zone and the inner zone: the inner zone was more strongly stained with TMRM than the outer zone, which faced the air. Using inhibitors of oxidative phosphorylation (dinitrophenol (DNP) or NaN3) and a specific inhibitor of CN-resistant respiration (benzohydroxamic acid (BHAM)), it has been demonstrated that the outer zone is basically formed by the O2 threshold for oxidative phosphorylation, while the inner cells mainly perform cyanide-resistant respiration. When cells around the early mound stage (just before prestalk and prespore differentiation) were cultured as 2-D cell masses, ecmA-expressing cells (pstA cells), ecmB-expressing cells (pstB cells) and D19-expressing cells (prespore; psp cells), arose in a position-dependent manner in the outer zone. In the inner zone, cell motility seemed to be markedly impaired and neither prestalk nor prespore differentiation occurred. In addition, once-differentiated prespore cells were found to dedifferentiate rapidly in the inner zone. The reason for dedifferentiation as well as for failure of cells to differentiate in the inner zone is discussed with reference to O2 radicals.  相似文献   

4.
To address the growing demand for functional cell-based assay technologies with accelerated drug discovery applications, we have proposed the use of human neuroblastoma cells (IMR-32) immobilized in three-dimensional (3-D) collagen hydrogel matrices. The gel protects weakly adherent cells from fluid mechanical forces while providing a more physiologically relevant 3-D environment. Hydrogels made up of collagen, between 0.5 and 1.0mg/ml, exhibited mechanical stability adequate to withstand fluid mechanical forces (<0.11 mN) typical of automated commercial fluid transfer equipment. Collagen-entrapped cells visualized with the aid of confocal microscopy and a potentiometric-sensitive dye, TMRM, exhibited round morphology in comparison to flat morphology typical of cells in two-dimensional (2-D) monolayer cultures. Morphological differentiation characterized by neurite extension and cell aggregation was observed for both 2-D and 3-D cultures. Differentiated IMR-32 cells failed to develop a resting membrane potential typical of excitable cells. Free intracellular calcium was monitored with Calcium Green-1. Depolarization-induced Ca 2+influx was only observed with differentiated 3-D cells unlike 2-D cells, where calcium flux was observed in both differentiated and undifferentiated cells. Taken together, the results revealed that collagen hydrogels (0.5 mg/ml collagen) were suitable structural supports for weakly adherent cells. However, for voltage-dependent calcium channel function applications, further investigations are needed to explain the difference between 2-D monolayer and 3-D collagen-entrapped cells.  相似文献   

5.
Shaking bioreactors are the most frequently used reaction vessels in biotechnology and have been so for many decades. In spite of their large practical importance, very little is known about the characteristic properties of shaken cultures from an engineering point of view. The few publications available contain to some extent contradicting statements and conflicting advice concerning the correct operating conditions of shaking bioreactors. Depending on the investigated microbial system, the engineering parameters may more or less significantly influence the experimental results in a quantitative as well as in a qualitative manner. Unfortunately, these kind of interactions are often overlooked or ignored by scientists. Precise knowledge about the controlling hydrodynamic phenomena in shaking bioreactors and quantitative information about the physical parameters influencing the cultures are needed to assure reproducible and meaningful operating conditions. In this introduction, the state of the art of culturing microorganisms in shaking bioreactors is reviewed and some issues of their practical application in screening and process development projects are addressed.  相似文献   

6.
Eukaryotic initiation factor 2 (eIF-2) is a heterotrimeric protein with subunits α, β and γ that forms a ternary complex with Met-tRNA and GTP. It promotes the binding of Met-tRNA to ribosomes and controls translational rates via phosphorylation/dephosphorylation mechanisms. By means of immunofluorescence and post-embedding immunocytochemistry of intact cells and quantitative immunoblotting of cell extracts, the cellular distribution of the initiation factor has been examined in primary neuronal cultures as well as in two established cell lines: PC12 phaeochromocytoma cells and rat pituitary GH4C1 cells. Our results indicated that the initiation factor is located not only in the cytoplasm but also in the nuclei of the cultured neurons and cell lines. In the cytoplasm, immunocytochemical studies reveal that the factor is present mainly in those areas that are rich in ribosomes. In the nucleus, the immunolabelling of eukaryotic initiation factor 2 verified the presence of gold particles in both nucleolar and extranucleolar areas. The specific distribution of this factor on both sides of the nuclear envelope suggests that it might have some nuclear-related function(s) besides its already known role in the control of translation  相似文献   

7.
Eukaryotic initiation factor 2 (eIF-2) is a heterotrimeric protein with subunits α, β and γ that forms a ternary complex with Met-tRNA and GTP. It promotes the binding of Met-tRNA to ribosomes and controls translational rates via phosphorylation/dephosphorylation mechanisms. By means of immunofluorescence and post-embedding immunocytochemistry of intact cells and quantitative immunoblotting of cell extracts, the cellular distribution of the initiation factor has been examined in primary neuronal cultures as well as in two established cell lines: PC12 phaeochromocytoma cells and rat pituitary GH4C1 cells. Our results indicated that the initiation factor is located not only in the cytoplasm but also in the nuclei of the cultured neurons and cell lines. In the cytoplasm, immunocytochemical studies reveal that the factor is present mainly in those areas that are rich in ribosomes. In the nucleus, the immunolabelling of eukaryotic initiation factor 2 verified the presence of gold particles in both nucleolar and extranucleolar areas. The specific distribution of this factor on both sides of the nuclear envelope suggests that it might have some nuclear-related function(s) besides its already known role in the control of translation  相似文献   

8.
The human melanocortin-2 receptor (hMC2R) is mainly present in the adrenal cortex and has been difficult to express in heterologous cells. The hMC2R fused to the EGFP at its C-terminus has been stably transfected in the murine M3 melanoma and HEK293 cells. In the M3 cells, the hMC2R-EGFP was well-addressed to the cell membrane and functional whereas in the HEK293 cells, the hMC2R-EGFP was retained intracellularly. These results suggest that some specific factors, missing in cells, which do not express any melanocortin receptor, are involved in the correct addressing of the hMC2R to the cell membrane.  相似文献   

9.
In previous studies it has been shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by altered gene expression. In this study an investigation was carried out into how different g conditions affect the proteome of such cells. For this purpose, callus cells were exposed to 8 g (centrifugation) and simulated microgravity (2-D clinorotation: fast rotating clinostat, yielding 0.0016 g at maximum; and 3-D random positioning) for up to 16 h. Extracts containing total soluble protein were subjected to 2-D SDS-PAGE. Image analysis of Sypro Ruby-stained gels showed that approximately 28 spots reproducibly and significantly (P <0.05) changed in amount after 2 h of hypergravity (18 up- and 10 down-regulated). These spots were analysed by electrospray ionization tandem mass spectrometry (ESI-MS/MS). In the case of 2-D clinorotation, 19 proteins changed in a manner similar to hypergravity, while random positioning affected only eight spots. Identified proteins were mainly stress related, and are involved in detoxification of reactive oxygen species, signalling, and calcium binding. Surprisingly, centrifugation and clinorotation showed homologies which were not detected for random positioning. The data indicate that simulation of weightlessness is different between clinorotation and random positioning.  相似文献   

10.
目的:鉴定肝癌细胞系HepG2中survivin异构体(survivin variant,SVV variant)并构建其真核表达栽体.方法:提取HepG2细胞总RNA,根据Gen-Bank内survivin 3个异构体核苷酸序列设计3条引物对其进行鉴定;设计含有BamH I和Xho I双酶切位点的SVV-3引物,逆转录聚合酶链反应(RT-PCR)扩增SVV-3完整编码区,扩增产物用BamHI和XhoI双酶切后定向克隆到真核细胞表达栽体pcDNA3.1中,序列测定进行鉴定.结果:HepG2细胞表达SVV-3、1,SVV-3表达尤为丰富.对SVV-3克隆测序,与Gen-Bank报道完全一致.结论:成功鉴定出HepG2表达SVV-3、1,构建了SVV-3真核表达载体.  相似文献   

11.
3T3 and SV-40 transformed 3T3 mouse fibroblasts were cultured in media with serum and antibiotics plus ammonia (NH3 z NH4+) added as NH4C1. Both cell lines cultured without added ammonia showed normal morphology and multiplication even though ammonia in the medium at the end of the culture period ranged from 35 to 48 μg/ml. Ammonia concentrations being significantly higher in media removed from cells at the end of the culture period than in media incubated identically without cells, verified that cells released substantial quantities of ammonia in addition to components of the medium which underwent spontaneous breakdown. Both cell lines showed changes in morphology and highly significant reductions in cell multiplication which increased progressively as the concentration of added ammonia on the initial day of culture was increased to 35μg/ml. Control 3T3 cultures released significantly greater quantities of ammonia per cell than control cultures of transformed cells but their multiplication was more adversely affected by added ammonia. There were downward shifts in pH of the culturing medium for both cell lines as culture age increased at all concentrations of added ammonia, However, significant reductions in cell multiplication resulted from additions of ammonia that did not produce significant changes in extracellular pH. The data show that studies upon the effects of pH of the medium on cultured cells require control of ammonia concentrations.  相似文献   

12.
13.
Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.  相似文献   

14.
Abstract. The origin and evolution of binucleate cells in cultures of HEp-2 cells have been studied by means of interval photography and time-lapse video-recording. Binuc leate cells most frequently formed by the fusion of two sister cells born in a previous mitosis. The study of binucleate cells has shown that they are a cellular type able to successfully undergo mitosis. However, the mitosis may be bipolar, tripolar or multi-polar. The daughter cells arising from these divisions do not follow a clear pattern in the number of nuclei they have, instead showing a wide range of possibilities.  相似文献   

15.
OBJECTIVE: To evaluate the effectiveness of 3-D vs. 2-D virtual microscopy as adjuncts to education and assessment in cervical cytology. STUDY DESIGN: Five cervical cytology slides were acquired in 2-D; then the identical area of the slide was acquired in 3-D, resulting in 2 sets of virtual slides for comparison with the original glass slide. Seventy-nine paid volunteer cytologists and cytotechnology students participated. Approximately half were sent the 2-D set of slides via the Web, and the others a 3-D set of slides on a DVD. Evaluators examined the virtual slides and committed to an interpretation. After receipt of the original glass slides, a second interpretation was made, if different from the virtual slide interpretation. RESULTS: Diagnostic accuracy using virtual cytology slides was similar to that for glass slides (94% vs. 96%). There was no difference in diagnostic accuracy between 2-D and 3-D slides (p = 0.28); however, the ability to focus 3-D slides in the z-axis was strongly endorsed by the participants because of the uncertainty and frustration of having some cells out of focus on 2-D virtual slides. CONCLUSION: There was consensus that virtual cervical cytology slides would be a useful augmentation to education and testing.  相似文献   

16.
To explain the evolution of grouping, Hamilton's selfish herdtheory assumes that predators attack the nearest prey and thatboth are acting on a 2-dimensional (2-D) plane. This proximityassumption in his theory is one explanation for marginal predation,the phenomenon whereby predators attack peripheral members ofa prey group. However, in some ecological circumstances, predatorsmove in 3-dimensional (3-D) space and prey in 2 dimensions.Because a predator coming from above or below the group mayhave relatively equal access to all members, marginal predationcannot be assumed. In this paper, we test whether marginal predationoccurs in such a 3-D/2-D geometry. We carried out 3 controlledlaboratory experiments in which fish attack prey grouped atthe water's surface. Predators were bass (Micropterous salmoides)or goldfish (Carassius auratus), and prey groups were eitherfree-swimming whirligig beetles (Dineutes discolor) or a constrainedgroup of tadpoles (Bufo bufo). In all 3 experiments, predatorswere significantly more likely to attack the periphery of preygroups. Our experiments also show that marginal predation isrobust to differences in overall density within a prey groupand that the fish are not reacting to observable state or behavioralcorrelates to position within a prey group. Furthermore, ourresults showed that predators will attack group margins evenwhen there is no variation, due to position, in nearest neighbordistance.  相似文献   

17.
The aim of this study was to characterize the in vitro osteogenic differentiation of dental pulp stem cells (DPSCs) in 2D cultures and 3D biomaterials. DPSCs, separated from dental pulp by enzymatic digestion, and isolated by magnetic cell sorting were differentiated toward osteogenic lineage on 2D surface by using an osteogenic medium. During differentiation process, DPSCs express specific bone proteins like Runx-2, Osx, OPN and OCN with a sequential expression, analogous to those occurring during osteoblast differentiation, and produce extracellular calcium deposits. In order to differentiate cells in a 3D space that mimes the physiological environment, DPSCs were cultured in two distinct bioscaffolds, Matrigel™ and Collagen sponge. With the addition of a third dimension, osteogenic differentiation and mineralized extracellular matrix production significantly improved. In particular, in Matrigel™ DPSCs differentiated with osteoblast/osteocyte characteristics and connected by gap junction, and therefore formed calcified nodules with a 3D intercellular network. Furthermore, DPSCs differentiated in collagen sponge actively secrete human type I collagen micro-fibrils and form calcified matrix containing trabecular-like structures. These neo-formed DPSCs-scaffold devices may be used in regenerative surgical applications in order to resolve pathologies and traumas characterized by critical size bone defects.Key words: dental pulp stem cell, mesenchymal stem cells, osteogenic differentiation, 3D scaffolds.  相似文献   

18.
Way L  Scutt N  Scutt A 《Cytotechnology》2011,63(6):567-579
Tendon and ligament injuries are very common, requiring some 200,000 reconstructions per year in the USA. Autografting can be used to repair these but donor tissue is limited and harvesting leads to morbidity at the graft sites. Tissue engineering has been used to grow simple tissues such as skin, cartilage and bone and due to their low vascularity and simple structure, tendons should be ideal candidates for such an approach. Scaffolds are essential for tissue engineering as they provide structure and signals that regulate growth. However, they present a physical barrier to cell seeding with the majority of the cells congregating at the scaffold surface. To address this we used centrifugation to enhance penetration of tendon-derived cells to the centres of 3-D scaffolds. The process had no apparent deleterious effects on the cells and both plating efficiency and cell distribution improved. After attachment the cells continued to proliferate and deposit a collagenous matrix. Scaffold penetration was investigated using layers of Azowipes allowing the separation and examination of individual leaves. At relatively low g-forces, cells penetrated a stack of 6 Azowipes leaving cells attached to each leaf. These data suggest that cytocentrifugation improves the penetration and homogeneity of tendon derived cells in 3-D and monolayer cultures.  相似文献   

19.
The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号