首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a comprehensive analysis of the subcellular localization and in vivo trafficking of Arabidopsis p24 proteins. In Arabidopsis, there are 11 p24 proteins, which fall into only δ and β subfamilies. Interestingly, the δ subfamily of p24 proteins in Arabidopsis is elaborated spectacularly in evolution, which can be grouped into two subclasses: p24δ1 and p24δ2. We found that, although all p24δ proteins possess classic COPII/COPI binding motifs in their cytosolic C-termini, p24δ1 proteins are localized to the endoplasmic reticulum (ER), p24δ2 proteins are localized to both ER and Golgi. Two p24β proteins reside largely in Golgi. Similar to Atp24 (termed p24δ1c in this study), p24δ2d also cycles between the ER and Golgi. Interestingly, coexpression with p24β1 could retain p24δ2d, but not p24δ1d in Golgi. We revealed that the lumenal coiled-coil domain of p24δ2d is required for its steady-state localization in Golgi, probably through its interaction with p24β1. In p24β1, there is no classic COPII or COPI binding motif in its C-terminus. However, the protein also cycles between the ER and Golgi. We found that a conserved RV motif located at the extreme end of the C-terminus of p24β1 plays an important role in its Golgi target.  相似文献   

2.
In vivo trafficking and localization of p24 proteins in plant cells   总被引:1,自引:0,他引:1  
p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the −3, −4 position and a diaromatic motif in the −7, −8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 protein ( At p24) and have investigated the contribution of the sorting motifs in its cytosolic tail to its in vivo localization. At p24-red fluorescent protein localizes exclusively to the endoplasmic reticulum (ER), in contrast with the localization of p24 proteins in other eukaryotes, and the dilysine motif is necessary and sufficient for ER localization. In contrast, At p24 mutants lacking the dilysine motif are transported along the secretory pathway to the prevacuolar compartment and the vacuole, although a significant fraction is also found at the plasma membrane. Finally, we have found that ER export of At p24 is COPII dependent, while its ER localization requires COPI function, presumably for efficient Golgi to ER recycling.  相似文献   

3.
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the mechanisms by which COPI influences COPII-mediated protein transport from the ER in plant cells are largely uncharacterized. Here we dissect the dynamics of COPI in intact cells using live-cell imaging and fluorescence recovery after photobleaching analyses to provide insights into the distribution of COPI and COPII machineries and the mechanisms by which COPI influences COPII-mediated protein export from the ER. We found that Arf1 and coatomer are dynamically associated with the Golgi apparatus and that the COPII coat proteins Sec24 and Sec23 localize at ER export sites that track with the Golgi apparatus in tobacco leaf epidermal cells. Arf1 is also localized at additional structures that originate from the Golgi apparatus but that lack coatomer, supporting the model that Arf1 also has a coatomer-independent role for post-Golgi protein transport in plants. When ER to Golgi protein transport is inhibited by mutations that hamper Arf1-GTPase activity without directly disrupting the COPII machinery for ER protein export, Golgi markers are localized in the ER and the punctate distribution of Sec24 and Sec23 at the ER export sites is lost. These findings suggest that Golgi membrane protein distribution is maintained by the balanced action of COPI and COPII systems, and that Arf1-coatomer is most likely indirectly required for forward trafficking out of the ER due to its role in recycling components that are essential for differentiation of the ER export domains formed by the Sar1-COPII system.  相似文献   

4.
Coat protein (COP)-coated vesicles have been shown to mediate protein transport through early steps of the secretory pathway in yeast and mammalian cells. Here, we attempt to elucidate their role in vesicular trafficking of plant cells, using a combined biochemical and ultrastructural approach. Immunogold labeling of cryosections revealed that COPI proteins are localized to microvesicles surrounding or budding from the Golgi apparatus. COPI-coated buds primarily reside on the cis-face of the Golgi stack. In addition, COPI and Arf1p show predominant labeling of the cis-Golgi stack, gradually diminishing toward the trans-Golgi stack. In vitro COPI-coated vesicle induction experiments demonstrated that Arf1p as well as coatomer could be recruited from cauliflower cytosol onto mixed endoplasmic reticulum (ER)/Golgi membranes. Binding of Arf1p and coatomer is inhibited by brefeldin A, underlining the specificity of the recruitment mechanism. In vitro vesicle budding was confirmed by identification of COPI-coated vesicles through immunogold negative staining in a fraction purified from isopycnic sucrose gradient centrifugation. Similar in vitro induction experiments with tobacco ER/Golgi membranes prepared from transgenic plants overproducing barley alpha-amylase-HDEL yielded a COPI-coated vesicle fraction that contained alpha-amylase as well as calreticulin.  相似文献   

5.
p23 (Tmp21 or p24δ), a member of the p24 family, is important for maintaining the integrity of the secretory pathway in mammals. It is a type I protein with a receptor-like luminal domain and a short cytoplasmic tail. This cytoplasmic tail carries an atypical endoplasmic reticulum (ER) retention KKXX motif that binds to coat protein I. The trafficking of p23 has been thought to be restricted to the early secretory pathway. However, recent findings as well as this study demonstrate that p23 is also found in the plasma membrane. By tagging different domains of p23 with green fluorescent protein, it is shown that it is the luminal domain that is primarily responsible for the appearance of p23 in the plasma membrane, despite the presence of a functional KKXX-ER retention and retrieval motif. When the KKXX motif is abolished, p23 shows an extremely increased trafficking to the plasma membrane. These experiments reveal the presence of two fractions of p23 with distinct trafficking destinations. One fraction cycles through the ER–Golgi pathway using its functional KKXX retrieval motif. The transient appearance of p23 in the plasma membrane is supported by the luminal domain. These results help to explain the functional presence of p23 in plasma membrane protein complexes and post-Golgi compartments.  相似文献   

6.
We have identified an important functional region of the yeast Arf1 activator Gea2p upstream of the catalytic Sec7 domain and characterized a set of temperature-sensitive (ts) mutants with amino acid substitutions in this region. These gea2-ts mutants block or slow transport of proteins traversing the secretory pathway at exit from the endoplasmic reticulum (ER) and the early Golgi, and accumulate both ER and early Golgi membranes. No defects in two types of retrograde trafficking/sorting assays were observed. We find that a substantial amount of COPI is associated with Golgi membranes in the gea2-ts mutants, even after prolonged incubation at the nonpermissive temperature. COPI in these mutants is released from Golgi membranes by brefeldin A, a drug that binds directly to Gea2p and blocks Arf1 activation. Our results demonstrate that COPI function in sorting of at least three retrograde cargo proteins within the Golgi is not perturbed in these mutants, but that forward transport is severely inhibited. Hence this region of Gea2p upstream of the Sec7 domain plays a role in anterograde transport that is independent of its role in recruiting COPI for retrograde transport, at least of a subset of Golgi-ER cargo.  相似文献   

7.
Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP) neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.  相似文献   

8.
The Golgi apparatus is a highly complex organelle comprised of a stack of cisternal membranes on the secretory pathway from the ER to the cell surface. This structure is maintained by an exoskeleton or Golgi matrix constructed from a family of coiled-coil proteins, the golgins, and other peripheral membrane components such as GRASP55 and GRASP65. Here we find that TMP21, p24a, and gp25L, members of the p24 cargo receptor family, are present in complexes with GRASP55 and GRASP65 in vivo. GRASPs interact directly with the cytoplasmic domains of specific p24 cargo receptors depending on their oligomeric state, and mutation of the GRASP binding site in the cytoplasmic tail of one of these, p24a, results in it being transported to the cell surface. These results suggest that one function of the Golgi matrix is to aid efficient retention or sequestration of p24 cargo receptors and other membrane proteins in the Golgi apparatus.  相似文献   

9.
Protein trafficking between the endoplasmic reticulum (ER) and Golgi apparatus is central to cellular homeostasis. ER export signals are utilized by a subset of proteins to rapidly exit the ER by direct uptake into COPII vesicles for transport to the Golgi. Norwalk virus nonstructural protein p22 contains a YXΦESDG motif that mimics a di-acidic ER export signal in both sequence and function. However, unlike normal ER export signals, the ER export signal mimic of p22 is necessary for apparent inhibition of normal COPII vesicle trafficking, which leads to Golgi disassembly and antagonism of Golgi-dependent cellular protein secretion. This is the first reported function for p22. Disassembly of the Golgi apparatus was also observed in cells replicating Norwalk virus, which may contribute to pathogenesis by interfering with cellular processes that are dependent on an intact secretory pathway. These results indicate that the ER export signal mimic is critical to the antagonistic function of p22, shown herein to be a novel antagonist of ER/Golgi trafficking. This unique and well-conserved human norovirus motif is therefore an appealing target for antiviral drug development.  相似文献   

10.
Protein trafficking is achieved by a bidirectional vesicle flow between the various compartments of the eukaryotic cell. COPII coated vesicles mediate anterograde protein transport from the endoplasmic reticulum to the Golgi apparatus, whereas retrograde Golgi-to-endoplasmic reticulum vesicles use the COPI coat. Inactivation of COPI vesicle formation in conditional sec21 (gamma-COP) mutants rapidly blocks transport of certain proteins along the early secretory pathway. We have identified the integral membrane protein Mst27p as a strong suppressor of sec21-3 and ret1-1 mutants. A C-terminal KKXX motif of Mst27p that allows direct binding to the COPI complex is crucial for its suppression ability. Mst27p and its homolog Yar033w (Mst28p) are part of the same complex. Both proteins contain cytoplasmic exposed C termini that have the ability to interact directly with COPI and COPII coat complexes. Site-specific mutations of the COPI binding domain abolished suppression of the sec21 mutants. Our results indicate that overexpression of MST27 provides an increased number of coat binding sites on membranes of the early secretory pathway and thereby promotes vesicle formation. As a consequence, the amount of cargo that can bind COPI might be important for the regulation of the vesicle flow in the early secretory pathway.  相似文献   

11.
Background information. Syntaxin 17 is a SNARE (soluble N‐ethylmaleimide‐sensitive‐factor‐attachment protein receptor) protein that predominantly localizes to the ER (endoplasmic reticulum) and to some extent in the ERGIC (ER—Golgi intermediate compartment). Syntaxin 17 has been suggested to function as a receptor at the ER membrane that mediates trafficking between the ER and post‐ER compartments. It has a unique 33 amino acid luminal tail whose function is not known. Here we have investigated the structural requirements for localization of syntaxin 17 to the ERGIC and its role in trafficking. Results. Deletion analysis showed that syntaxin 17 required its cytoplasmic domain to exit the ER and localize to the ERGIC. Mutation of a conserved tyrosine residue in the cytoplasmic domain resulted in reduced localization of syntaxin 17 in the ERGIC and ER‐exit sites, suggesting the presence of a tyrosine‐based ER export motif. Syntaxin 17 also required its C‐terminal tail to localize to the ERES (ER exit sites) and ERGIC. Knockdown of syntaxin 17 destabilized the ERGIC organization and also caused fragmentation of the Golgi complex. Syntaxin 17 showed direct interaction with transmembrane proteins p23 and p25 (cargo receptors that cycle between the ER and Golgi) with the help of its C‐terminal tail. Overexpression of syntaxin 17 redistributed β‐COP (β‐coatomer protein) which required its C‐terminal tail. Overexpression of syntaxin 17 also blocked the anterograde transport of VSVG (vesicular stomatitis virus G‐protein) in the ERGIC. Conclusions. We show that syntaxin 17 has a tyrosine‐based motif which is required for its incorporation into COPII (coatomer protein II) vesicles, exit from the ER and localization to the ERGIC. Our results suggest that syntaxin 17 cycles between the ER and ERGIC through classical trafficking pathways involving COPII and COPI (coatomer protein I) vesicles, which requires its unique C‐terminal tail. We also show that syntaxin 17 is essential for maintaining the architecture of ERGIC and Golgi.  相似文献   

12.
Heteromeric complexes of p24 proteins cycle between early compartments of the secretory pathway and are required for efficient protein sorting. Here we investigated the role of cytoplasmically exposed tail sequences on two p24 proteins, Emp24p and Erv25p, in directing their movement and subcellular location in yeast. Studies on a series of deletion and chimeric Emp24p-Erv25p proteins indicated that the tail sequences impart distinct functional properties that were partially redundant but not entirely interchangeable. Export of an Emp24p-Erv25p complex from the endoplasmic reticulum (ER) did not depend on two other associated p24 proteins, Erp1 and Erp2p. To examine interactions between the Emp24p and Erv25p tail sequences with the COPI and COPII coat proteins, binding experiments with immobilized tail peptides and coat proteins were performed. The Emp24p and Erv25p tail sequences bound the Sec13p/Sec31p subunit of the COPII coat (K(d) approximately 100 microm), and binding depended on a pair of aromatic residues found in both tail sequences. COPI subunits also bound to these Emp24p and Erv25p peptides; however, the Erv25p tail sequence, which contains a dilysine motif, bound COPI more efficiently. These results suggest that both the Emp24p and Erv25p cytoplasmic sequences contain a di-aromatic motif that binds subunits of the COPII coat and promotes export from the ER. The Erv25p tail sequence binds COPI and is responsible for returning this complex to the ER.  相似文献   

13.
Silkworm posterior silkgland is a model for studying intracellular trafficking. Here, using this model, we identify several potential cargo proteins of BmKinesin-1 and focus on one candidate, BmCREC. BmCREC (also known as Bombyx mori DNA supercoiling factor, BmSCF) was previously proposed to supercoil DNA in the nucleus. However, we show here that BmCREC is localized in the ER lumen. Its C-terminal tetrapeptide HDEF is recognized by the KDEL receptor, and subsequently it is retrogradely transported by coat protein I (COPI) vesicles to the ER. Lacking the HDEF tetrapeptide of BmCREC or knocking down COPI subunits results in decreased ER retention and simultaneously increased secretion of BmCREC. Furthermore, we find that BmCREC knockdown markedly disrupts the morphology of the ER and Golgi apparatus and leads to a defect of posterior silkgland tube expansion. Together, our results clarify the ER retention mechanism of BmCREC and reveal that BmCREC is indispensable for maintaining ER/Golgi morphology.  相似文献   

14.
Newly synthesized membrane and secreted proteins undergo a series of posttranslational modifications in the Golgi apparatus, including attachment of carbohydrate moieties. The final structure of so-formed glycans is determined by the order of execution of the different glycosylation steps, which seems intimately related to the spatial distribution of glycosyltransferases and glycosyl hydrolases within the Golgi apparatus. How cells achieve an accurate localization of these enzymes is not completely understood but might involve dynamic processes such as coatomer-coated (COPI) vesicle-mediated trafficking. In yeast, this transport is likely to be regulated by vacuolar protein sorting 74 (Vps74p), a peripheral Golgi protein able to interact with COPI coat as well as with a binding motif present in the cytosolic tails of some mannosyltransferases. Recently, Golgi phosphoprotein 3 (GOLPH3), the mammalian homolog of Vps74, has been shown to control the Golgi localization of core 2 N-acetylglucosamine-transferase 1. Here, we highlight a role of GOLPH3 in the spatial localization of α-2,6-sialyltransferase 1. We show, for the first time, that GOLPH3 supports incorporation of both core 2 N-acetylglucosamine-transferase 1 and α-2,6-sialyltransferase 1 into COPI vesicles. Depletion of GOLPH3 altered the subcellular localization of these enzymes. In contrast, galactosyltransferase, an enzyme that does not interact with GOLPH3, was neither incorporated into COPI vesicles nor was dependent on GOLPH3 for proper localization.  相似文献   

15.
Generally, plasma membrane (PM) proteins are cotranslationally inserted into the endoplasmic reticulum (ER) and travel in vesicles via the Golgi apparatus to the PM. In the yeast Saccharomyces cerevisiae, the polytopic membrane protein Ist2p is encoded by an mRNA that is localized to the cortex of daughter cells. It has been suggested that IST2 mRNA localization leads to the accumulation of the protein at the PM of daughter cells. Since small- and medium-sized daughter cells only contain cortical, but not perinuclear ER, this implies the local translation of Ist2p specifically at the cortical ER. Here, we show that localization of constitutively expressed IST2 mRNA is required for delivery of Ist2p to the PM of daughter, but not mother cells and that it does not result in daughter-specific Ist2p accumulation. In contrast to a PM-located hexose transporter (Hxt1p) that follows the standard secretory pathway, the trafficking of Ist2p is independent of myosin-mediated vesicular transport. Furthermore, colocalization experiments in mutants of the secretory pathway demonstrate that trafficking of Ist2p does not require the classical secretory machinery. These data suggest the existence of a novel trafficking pathway connecting specialized domains of the ER with the PM.  相似文献   

16.
Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells by inhibiting vesicle formation at the Golgi apparatus. Although this toxin has been used in many studies, its effects on plant cells are still shrouded in controversy. We have reinvestigated the early responses of plant cells to BFA with novel tools, namely, tobacco Bright Yellow 2 (BY-2) suspension-cultured cells expressing an in vivo green fluorescent protein-Golgi marker, electron microscopy of high-pressure frozen/freeze-substituted cells, and antisera against Atgamma-COP, a component of COPI coats, and AtArf1, the GTPase necessary for COPI coat assembly. The first effect of 10 microg/mL BFA on BY-2 cells was to induce in <5 min the complete loss of vesicle-forming Atgamma-COP from Golgi cisternae. During the subsequent 15 to 20 min, this block in Golgi-based vesicle formation led to a series of sequential changes in Golgi architecture, the loss of distinct Golgi stacks, and the formation of an endoplasmic reticulum (ER)-Golgi hybrid compartment with stacked domains. These secondary effects appear to depend in part on stabilizing intercisternal filaments and include the continued maturation of cis- and medial cisternae into trans-Golgi cisternae, as predicted by the cisternal progression model, the shedding of trans-Golgi network cisternae, the fusion of individual Golgi cisternae with the ER, and the formation of large ER-Golgi hybrid stacks. Prolonged exposure of the BY-2 cells to BFA led to the transformation of the ER-Golgi hybrid compartment into a sponge-like structure that does not resemble normal ER. Thus, although the initial effects of BFA on plant cells are the same as those described for mammalian cells, the secondary and tertiary effects have drastically different morphological manifestations. These results indicate that, despite a number of similarities in the trafficking machinery with other eukaryotes, there are fundamental differences in the functional architecture and properties of the plant Golgi apparatus that are the cause for the unique responses of the plant secretory pathway to BFA.  相似文献   

17.
The p24 family members are transmembrane proteins assembled into heteromeric complexes that continuously cycle between the ER and the Golgi apparatus. These cargo proteins were assumed to play a structural role in COPI budding because of their major presence in mammalian COPI vesicles. However, this putative function has not been proved conclusively so far. Furthermore, deletion of all eight yeast p24 family members does not produce severe transport phenotypes, suggesting that the p24 complex is not essential for COPI function. In this paper we provide direct evidence that the yeast p24 complex plays an active role in retrograde transport from Golgi to ER by facilitating the formation of COPI-coated vesicles. Therefore, our results demonstrate that p24 proteins are important for vesicle formation instead of simply being a passive traveler, supporting the model in which cargo together with a small GTPase of the ARF superfamily and coat subunits act as primer for vesicle formation.  相似文献   

18.
The p24 family proteins form homo‐ and hetero‐oligomeric complexes for efficient transport of cargo proteins from the endoplasmic reticulum to the Golgi apparatus. It consists of four subfamilies (p24α, p24β, p24γ, and p24δ). p24γ2 plays crucial roles in the selective transport of glycosylphosphatidylinositol‐anchored proteins. Here, we determined the crystal structure of mouse p24γ2 Golgi dynamics (GOLD) domain at 2.8 Å resolution by the single anomalous diffraction method using intrinsic sulfur atoms. In spite of low sequence identity among p24 family proteins, p24γ2 GOLD domain assumes a β‐sandwich fold, similar to that of p24β1 or p24δ1. An additional short α‐helix is observed at the C‐terminus of the p24γ2 GOLD domain. Intriguingly, p24γ2 GOLD domains crystallize as dimers, and dimer formation seems assisted by the short α‐helix. Dimerization modes of GOLD domains are compared among p24 family proteins. Proteins 2017; 85:764–770. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Glycosylphosphatidylinositol (GPI)-anchored proteins are secretory proteins that are attached to the cell surface of eukaryotic cells by a glycolipid moiety. Once GPI anchoring has occurred in the lumen of the endoplasmic reticulum (ER), the structure of the lipid part on the GPI anchor undergoes a remodeling process prior to ER exit. In this study, we provide evidence suggesting that the yeast p24 complex, through binding specifically to GPI-anchored proteins in an anchor-dependent manner, plays a dual role in their selective trafficking. First, the p24 complex promotes efficient ER exit of remodeled GPI-anchored proteins after concentration by connecting them with the COPII coat and thus facilitates their incorporation into vesicles. Second, it retrieves escaped, unremodeled GPI-anchored proteins from the Golgi to the ER in COPI vesicles. Therefore the p24 complex, by sensing the status of the GPI anchor, regulates GPI-anchored protein intracellular transport and coordinates this with correct anchor remodeling.  相似文献   

20.
 The secretory apparatus within all eukaryotic cells comprises a dynamic membrane system with bidirectional membrane transport pathways and overlapping compartmental boundaries. Membrane traffic and organelle biogenesis/maintenance are fundamentally linked within this system, with perturbations in membrane traffic quickly leading to changes in organelle structure and identity. Dissection of the molecular basis of these properties in yeast and mammalian cells has revealed a crucial role for the cytoplasmic protein complex ARF1/COPI, which undergoes regulated assembly and disassembly with membranes. ARF1/COPI appears to be involved in the formation and maintenance of the Golgi complex, which is the receiving and delivery station for all secretory traffic. ARF1-GTP, through assembly of COPI to membranes and, possibly, through activation of PLD, is likely to promote the formation and maturation of pre-Golgi intermediates into Golgi elements, whereas ARF-GDP causes COPI dissociation and stimulates the formation of retrograde transport structures that recycle Golgi membrane back to the ER. These processes are appear to underlie the coupling of organelle biogenesis and membrane trafficking within cells, allowing the size and shape of secretory organelles to be altered in response to changing cellular needs. Future work needs to address how the activation and localization of ARF1/COPI to membranes as well as other related factors are temporally and spatially regulated, and by what mechanism they transform membrane shape and dynamics to facilitate protein transport and compartmental functioning. Accepted: 23 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号