首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nakata PA  McConn MM 《Plant physiology》2000,124(3):1097-1104
Plants accumulate crystals of calcium oxalate in a variety of shapes, sizes, amounts, and spatial locations. How and why many plants form crystals of calcium oxalate remain largely unknown. To gain insight into the regulatory mechanisms of crystal formation and function, we have initiated a mutant screen to identify the genetic determinants. Leaves from a chemically mutagenized Medicago truncatula population were visually screened for alterations in calcium oxalate crystal formation. Seven different classes of calcium oxalate defective mutants were identified that exhibited alterations in crystal nucleation, morphology, distribution and/or amount. Genetic analysis suggested that crystal formation is a complex process involving more than seven loci. Phenotypic analysis of a mutant that lacks crystals, cod 5, did not reveal any difference in plant growth and development compared with controls. This finding brings into question the hypothesized roles of calcium oxalate formation in supporting tissue structure and in regulating excess tissue calcium.  相似文献   

2.
3.
Soluble and insoluble oxalate and insoluble calcium were measured in the leaves of Phaseolus vulgaris. The plants were grown in nutrient solutions with two different concentrations of calcium. Two developmental stages of the leaves were studied. Although the content of insoluble calcium differs widely according to leaf age and growth conditions, the percentage bound in crystals is nearly the same in all cases. In the growing leaves, concentrations of total oxalate are independent of calcium supply, thus, showing that the known rise in numbers of crystals, and of cells containing them, is not induced via oxalate biosynthesis. Fully expanded leaves contain more oxalate when grown in a nutrient solution with higher calcium concentration. Amounts of oxalate in percent of dry weight are similar to those given in the literature for other legume leaves.  相似文献   

4.
Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees.The biological roles for calcium...  相似文献   

5.
BACKGROUND AND AIMS: Pistia stratiotes produces large amounts of calcium (Ca) oxalate crystals in specialized cells called crystal idioblasts. The potential involvement of Ca(2+) channels in Ca oxalate crystal formation by crystal idioblasts was investigated. METHODS: Anatomical, ultrastructural and physiological analyses were used on plants, fresh or fixed tissues, or protoplasts. Ca(2+) uptake by protoplasts was measured with (45)Ca(2+), and the effect of Ca(2+) channel blockers studied in intact plants. Labelled Ca(2+) channel blockers and a channel protein antibody were used to determine if Ca(2+) channels were associated with crystal idioblasts. KEY RESULTS: (45)Ca(2+) uptake was more than two orders of magnitude greater for crystal idioblast protoplasts than mesophyll protoplasts, and idioblast number increased when medium Ca was increased. Plants grown on media containing 1-50 microM of the Ca(2+) channel blockers, isradipine, nifedipine or fluspirilene, showed almost complete inhibition of crystal formation. When fresh tissue sections were treated with the fluorescent dihydropyridine-type Ca(2+) channel blocker, DM-Bodipy-DHP, crystal idioblasts were intensely labelled compared with surrounding mesophyll, and the label appeared to be associated with the plasma membrane and the endoplasmic reticulum, which is shown to be abundant in idioblasts. An antibody to a mammalian Ca(2+) channel alpha1 subunit recognized a single band in a microsomal protein fraction but not soluble protein fraction on western blots, and it selectively and heavily labelled developing crystal idioblasts in tissue sections. CONCLUSIONS: The results demonstrate that Ca oxalate crystal idioblasts are enriched, relative to mesophyll cells, in dihydropyridine-type Ca(2+) channels and that the activity of these channels is important to transport and accumulation of Ca(2+) required for crystal formation.  相似文献   

6.
7.
Our previous report showed that uropathogenic bacteria, e.g., Escherichia coli, are commonly found inside the nidus of calcium oxalate (CaOx) kidney stones and may play pivotal roles in stone genesis. The present study aimed to prove this new hypothesis by direct examining CaOx lithogenic activities of both Gram-negative and Gram-positive bacteria. CaOx was crystallized in the absence (blank control) or presence of 105 CFU/ml E. coli, Klebsiella pneumoniae, Staphylococcus aureus, or Streptococcus pneumoniae. Fragmented red blood cell membranes and intact red blood cells were used as positive and negative controls, respectively. The crystal area and the number of aggregates were measured to initially screen for effects of bacteria on CaOx crystal growth and aggregation. The data revealed that all the bacteria tested dramatically increased the crystal area and number of crystal aggregates. Validation assays (spectrophotometric oxalate-depletion assay and an aggregation–sedimentation study) confirmed their promoting effects on both growth (20.17 ± 3.42, 17.55 ± 2.27, 16.37 ± 1.38, and 21.87 ± 0.85 % increase, respectively) and aggregation (57.45 ± 2.08, 51.06 ± 5.51, 55.32 ± 2.08, and 46.81 ± 3.61 % increase, respectively) of CaOx crystals. Also, these bacteria significantly enlarged CaOx aggregates, with the diameter greater than the luminal size of distal tubules, implying that tubular occlusion might occur. Moreover, these bacterial effects were dose-dependent and specific to intact viable bacteria, not intact dead or fragmented bacteria. In summary, intact viable E. coli, K. pneumoniae, S. aureus, and S. pneumoniae had significant promoting effects on CaOx crystal growth and aggregation. This functional evidence supported the hypothesis that various types of bacteria can induce or aggravate metabolic stone disease, particularly the CaOx type.  相似文献   

8.
The function of lipid peroxidation and the anti-peroxidative enzymes of rat liver and kidney were investigated under hyperoxaluric and stone forming conditions. The experimental animals showed higher malondialdehyde content in liver and kidney than that of control. A significant increase in malondialdehyde release was observed in the experimental liver or kidney when incubated with either ferrous sulphate or hydrogen peroxide compared to that of control liver or kidney. Superoxide dismutase activity was not affected in the hyperoxaluric rats while there was a moderate increase in the stone forming rats when compared to control. Highly significant decrease in catalase activity was observed in both conditions in liver and kidney compared to control.  相似文献   

9.
We assessed the effects of intracrystalline urinary proteins on the ability of Type II Madin-Darby canine kidney (MDCK-II) cells to bind and degrade calcium oxalate monohydrate (COM) crystals. Binding of [14C]-labelled inorganic crystals (iCOM), and COM crystals precipitated from centrifuged and filtered (CF) or ultrafiltered (UF) human urine was quantified by radioactive analysis. SDS-PAGE confirmed the presence of intracrystalline proteins > 10 kDa in CF crystals and their absence from UF crystals. Morphological effects were assessed qualitatively by field emission scanning electron microscopy. iCOM crystals bound rapidly and extensively and were resistant to degradation. Binding of CF crystals was weaker than UF crystals, and both had markedly less affinity than iCOM. CF and UF crystals were extensively degraded within 90 min, the effect being more pronounced with CF. These results support our hypothesis that intracrystalline proteins protect against urolithiasis by facilitating intracellular proteolytic digestion and destruction of crystals phagocytosed by urothelial cells.  相似文献   

10.
Summary Crystal idioblasts are cells which are specialized for accumulation of Ca2+ as a physiologically inactive, crystalline salt of oxalic acid. Using microautoradiographic, immunological, and ultrastructural techniques, the process of raphide crystal growth, and how crystal growth is coordinated with cell growth, was studied in idioblasts ofPistia stratiotes. Incorporation of45Ca2+ directly demonstrated that, relative to surrounding mesophyll cells, crystal idioblasts act as high-capacity Ca2+ sinks, accumulating large amounts of Ca2+ within the vacuole as crystals. The pattern of addition of Ca2+ during crystal growth indicates a highly regulated process with bidirectional crystal growth. In very young idioblasts,45Ca2+ is incorporated along the entire length of the needle-shaped raphide crystals, but as they mature incorporation only occurs at crystal tips in a bidirectional mode. At full maturity, the idioblast stops Ca2+ uptake, although the cells are still alive, demonstrating an ability to strictly regulate Ca transport processes at the plasma membrane. In situ hybridization for ribosomal RNA shows young idioblasts are extremely active cells, are more active than older idioblasts, and have higher general activity than surrounding mesophyll cells. Polarizing and scanning electron microscopy demonstrate that the crystal morphology changes as crystals develop and includes morphological polarity and an apparent nucleation point from which crystals grow bidirectionally. These results indicate a carefully regulated process of biomineralization in the vacuole. Finally, we show that the cytoskeleton is important in controlling the idioblast cell shape, but the regulation of crystal growth and morphology is under a different control mechanism.Abbreviation SEM scanning electron microscopy  相似文献   

11.
Four acidic polypeptides which inhibit the growth of calcium oxalate crystals have been isolated from normal human urine, and two of these have been characterized with respect to their amino acid and carbohydrate compositions. SDS-Polyacrylamide gel electrophoresis of either of the two latter inhibitors revealed one prominent band that migrated with an apparent molecular weight of 17,500 daltons. γ-Carboxyglutamate is present in these inhibitors, and they contain a total of more than 25% glutamic and aspartic acids and less than 10% of basic amino acids.  相似文献   

12.
13.
Oxalic acid metabolism and calcium oxalate formation in Lemna minor L.   总被引:6,自引:0,他引:6  
Abstract Axenic Lemna minor plants, which form numerous calcium oxalate crystals, were exposed to [14C]-glycolic acid, -glyoxylic acid, -oxalic acid and -ascorbic acid and prepared for microautoradiography by a technique that preserves only insoluble label to determine specifically the pathway leading to oxalic acid used for crystal formation. Label from glycolic, glyoxylic, and oxalic acids was incorporated into crystals. Label from oxalic acid was also found in starch when exposure to label was done in the light but not dark, while plastids specialized for lipid storage were heavily labelled under both conditions. Incorporation of label from glycolic and glyoxylic acids, but not oxalic acid, was inhibited in the presence of the glycolate oxidase inhibitors, αHPMS (2-pyridylhydroxy methanesulphonic acid) and mHBA (methyl 2-hydroxy-3-butynoic acid), and inhibition of labelling was not due to an effect on uptake. These studies show that the glycolate oxidase pathway to oxalic acid is operational in L. minor and that the product is available for crystal formation. Dark-grown plants form almost four times as many crystal cells (idioblasts) as do light-grown plants, indicating crystal formation is not in response to photorespiratory glycolate production. Label from [1-14C]ascorbic acid was also incorporated into crystals and labelling was inhibited by mHBA, indicating glycolic acid and/or glyoxylic acid are possible intermediates of ascorbic acid catabolism. The effect of nitrogen source on crystal formation was also investigated. Significantly more crystal idioblasts were formed, on a surface area basis, by plants grown on ammonium than by plants grown on nitrate nitrogen. When grown with mixed ammonium and nitrate, an intermediate number of crystal idioblasts were formed.  相似文献   

14.
15.
V. R. Franceschi 《Protoplasma》1984,120(3):216-223
Summary Sugar beet (Beta vulgaris L.) leaf has a layer of cells extended laterally between the palisade parenchyma and spongy mesophyll that develop numerous small crystals (crystal sand) within their vacuoles. Solubility studies and histochemical staining indicate the crystals are calcium oxalate. The crystals are deposited within the vacuoles early during leaf development, and at maturity the cells are roughly spherical in shape and 2 to 3 times larger than other mesophyll cells. Crystal deposition is preceeded by formation of membrane vesicles within the vacuole. The membranes are synthesizedde novo in the vacuole and have a typical trilaminate structure as viewed with the TEM. The membranes are formed within paracrystalline aggregates of tubular particles (6–8nm outer diameter) as membrane sheets, but are later organized into chambers or vesicles. Calcium oxalate is then precipitated within the membrane chambers. The tubular particles involved in membrane synthesis are usually present in the vacuoles of mature crystal cells, but in very small amounts.  相似文献   

16.
Daniela Pinna 《Aerobiologia》1993,9(2-3):157-167
Summary Extensive, uniform, yellow-brown films are observed on many monuments. The origin of these films, composed predominantly of calcium oxalate, has been investigated by several authors. Oxalate film formation may be related, in some cases, to the activity of such microorganisms as fungi, which presumably form oxalic acid via the metabolic transformation of organic substances already present on the stone. The present work provides an overview of the physiological factors affecting oxalate synthesis by fungi and of oxalic acid in fungi metabolism.  相似文献   

17.
18.
Renal calculus is a global common urological disease that is closely related to crystal adhesion and renal tubular epithelial cell impairment. Gap junctions (GJs) and their components (connexins and Cxs) are involved in various pathophysiology processes, but their roles in renal calculi progression are not well defined. Our previous RNA microarray analysis suggests that GJs are one of the key predicted pathways involved in the renal calcium oxalate (CaOx) crystal rat model. In the current study, we found that the Cx43 and Cx32 expression and the GJ function decreased significantly after stimulation with CaOx or sodium oxalate (NaOx) in NRK-52E, MDCK, and HK-2 cells, and Cx43 expression also decreased in renal tissues in renal CaOx crystal model rats. Inhibition of Cx43 in NRK-52E cells by small interference RNA significantly increased the CD44 and androgen receptor expression, and the adhesion between CaOx crystals and cells, which were consistent with the function of GJ inhibitors. On the other hand, after GJ function and Cx43 expression were increased by allicin, diallyl disulfide, or diallyl trisulfide, the impairment of NRK-52E cells by NaOx or other GJ inhibitors and the adhesion between CaOx crystals and renal cells decreased significantly. Furthermore, allicin also increased Cx43 expression and inhibited crystal deposition in rat kidneys. Taken together, our results provide a basis that GJs and Cx43 may participate in renal CaOx stone progression and that allicin, together with its analogues, could be potential drugs for renal calculus precaution.  相似文献   

19.
《Bone and mineral》1990,8(1):59-67
The crystallization of calcium oxalate in the urine of patients with hyperparathyroidism and hyperthyroidism was studied using a mixed suspension mixed product removal (MSMPR) system. In addition, calcium metabolism in hyperthyroidism and its relationship to urolithiasis was investigated. The urines from all the three groups (normal subjects, hyperparathyroid and hyperthyroid patients) showed reduced nucleation rates and increased growth rates in comparison with the control synthetic urine. The nucleation rate was not significantly different between the three human urine groups, while the growth rate was significantly higher in the hyperparathyroid group compared to the normal and hyperthyroid groups. Crystal volume (suspension density) in the hypetparathyroid group was approximately twice that in the other two groups. Serum and ionized calcium levels in hyperparathyroid patients were higher than in normal subjects, while hyperthyroid patients had levels only slightly higher than those in normal subjects. The hyperparathyroid and hyperthyroid groups differed significantly from the normal group in urinary calcium excretion. These two groups also showed significantly higher levels of serum alkaline phosphatase and urinary hydroxyproline than did the normal group. Although hyperthyroid patients have a calcium metabolism similar to hyperparathyroid patients, the incidence of urolithiasis is no different between hyperthyroid and normal subjects. The results of both crystallization and calcium metabolism in hyperparathyroid patients were not significantly different between those with and without urolithiasis. The result of crystallization was also not significantly different between hyperparathyroid patients with and without hypercalciuria. This study suggests that hypercalciuria alone does not produce urinary stones and that urine from hyperparathyroid patients may contain promotors of calcium oxalate crystallization and calcium stone formation.  相似文献   

20.
The injurious effect of hydrogen peroxide (H2O2) on renal epithelial cells of the African green monkey (Vero cells) and the difference in the modulation of Vero cells on crystal growth of calcium oxalate (CaOxa) before and after injury were investigated. The degree of injury of Vero cells was proportional to the concentration and action time of H2O2. After the cells had been injured, the released amount of malonaldehyde in the culture medium increased, the superoxide dismutase activity decreased, the expression quantity of osteopontin on the surface of Vero cells increased significantly, the zeta potential became more negative, and the amount of CaOxa crystals adhering to cells increased. The CaOxa crystals induced by the cells in the control group were round and blunt; however, those induced by the injured cells had irregular shapes with sharp edges and corners. As the crystallization time increased from 6 to 24 h, the size of the crystals induced by the injured cells increased accordingly, whereas that of crystals induced by the control cells did not increase significantly. The injured cells could promote the growth of CaOxa crystals and their adhesion to the cells; thus, the formation of CaOxa stones was promoted. The cells in the control group could also be injured after being incubated with supersaturated CaOxa solution for a long time, which promoted the crystallization of CaOxa. The results suggest that the retention of supersaturated CaOxa solution or CaOxa crystals in the urinary tract for a long time is a risk factor for the formation of kidney stones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号