首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accurate and rapid protein quantitation is essential for screening biomarkers for disease stratification and monitoring, and to validate the hundreds of putative markers in human biofluids, including blood plasma. An analytical method that utilizes stable isotope-labeled standard (SIS) peptides and selected/multiple reaction monitoring-mass spectrometry (SRM/MRM-MS) has emerged as a promising technique for determining protein concentrations. This targeted approach has analytical merit, but its true potential (in terms of sensitivity and multiplexing) has yet to be realized. Described herein is a method that extends the multiplexing ability of the MRM method to enable the quantitation 142 high-to-moderate abundance proteins (from 31 mg/mL to 44 ng/mL) in undepleted and non-enriched human plasma in a single run. The proteins have been reported to be associated to a wide variety of non-communicable diseases (NCDs), from cardiovascular disease (CVD) to diabetes. The concentrations of these proteins in human plasma are inferred from interference-free peptides functioning as molecular surrogates (2 peptides per protein, on average). A revised data analysis strategy, involving the linear regression equation of normal control plasma, has been instituted to enable the facile application to patient samples, as demonstrated in separate nutrigenomics and CVD studies. The exceptional robustness of the LC/MS platform and the quantitative method, as well as its high throughput, makes the assay suitable for application to patient samples for the verification of a condensed or complete protein panel. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

2.
We present a comprehensive workflow for large scale (>1000 transitions/run) label‐free LC‐MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling that improves S/N by twofold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, normalized group area ratio, MLR normalization, weighted regression analysis, and data dissemination through the Yale protein expression database. As a proof of principle we developed a robust 90 min LC‐MRM assay for mouse/rat postsynaptic density fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label‐free and SIS analyses. Overall, our method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC‐MRM assay.  相似文献   

3.
Kuhn E  Wu J  Karl J  Liao H  Zolg W  Guild B 《Proteomics》2004,4(4):1175-1186
A general method for the quantification of proteins in human serum was developed using mass spectrometry (MS) and stable isotope-labeled synthetic peptides as internal standards. Using this approach, C-reactive protein (CRP), a diagnostic marker of rheumatoid arthritis (RA), was detected in serum samples taken from patients with either erosive or nonerosive RA and compared to healthy individuals. Small volumes of serum samples were enriched for low-abundance proteins through the selective removal of human serum albumin (HSA), immunoglobulin G (IgG), and haptoglobin. After depletion of abundant proteins, the complexity of the protein mixture was further simplified using size exclusion chromatography (SEC) to fractionate denatured proteins into discrete molecular weight ranges. Fractions of interest containing CRP, M(r) = 25 000, were pooled, digested with trypsin, and then fixed quantities of the synthetic peptides were added to the mixture. The mixture of tryptic peptides was subsequently analyzed by nanoflow chromatography-tandem MS (nanoLC-MS/MS) using multiple-reaction monitoring (MRM) on a triple quadrupole mass spectrometer (TQ-MS). The ratio of transition ions derived from the endogenous and isotope-labeled peptides provided a quantitative measure of CRP in the original samples as assessed by independent measurement of CRP in the same patient samples using an immunoassay. The use of isotope-labeled synthetic peptides and MRM is a powerful analytical method for the prescreening of candidate protein biomarkers in human serum prior to antibody and immunoassay development.  相似文献   

4.
液质联用多反应监测法定量目标多肽或蛋白质   总被引:2,自引:0,他引:2  
为建立优化的血浆内源性多肽提取方法,并且构建目标多肽和蛋白质的质谱定量方 法,本研究考察了超滤法、有机溶剂沉淀法和固相萃取法对血浆内源性多肽的提取效果 ,并通过Tricine-SDS-PAGE对提取效果进行比较.通过液相色谱串联质谱多反应监测 (MRM)分析,建立了多肽标准品ESAT-6定量方法,并将ESAT-6定量建立的液相色谱和质谱条件应用于蛋白质的定量,对多肽和蛋白质MRM定量的标准曲线进行了考 察.Tricine-SDS-PAGE结果表明,乙腈沉淀法是最佳的血浆内源性多肽提取方法,低分子量的多肽可以得到很好的富集,且能有效地去除高分子蛋白质的污染.液相色谱串联 质谱MRM法检测血浆内提取的多肽,标准曲线的线性较好,相关系数为0.999.另外,采 用MRM法对胶内分离的蛋白质进行定量,标准曲线的线性相关系数为0.995.综上所述, 本研究构建了一种简单有效的血浆多肽提取方法,通过液质联用MRM法成功地实现了目标多肽和蛋白质定量测定.该定量方法可以推广应用于复杂样品中的多肽和蛋白质的定 量分析.  相似文献   

5.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC-MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC-MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately 2-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC-MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers.  相似文献   

6.
The field of proteomics is rapidly turning towards targeted mass spectrometry (MS) methods to quantify putative markers or known proteins of biological interest. Historically, the enzyme-linked immunosorbent assay (ELISA) has been used for targeted protein analysis, but, unfortunately, it is limited by the excessive time required for antibody preparation, as well as concerns over selectivity. Despite the ability of proteomics to deliver increasingly quantitative measurements, owing to limited sensitivity, the leads generated are in the microgram per milliliter range. This stands in stark contrast to ELISA, which is capable of quantifying proteins at low picogram per milliliter levels. To bridge this gap, targeted liquid chromatography (LC) tandem MS (MS/MS) analysis of tryptic peptide surrogates using selected reaction monitoring detection has emerged as a viable option for rapid quantification of target proteins. The precision of this approach has been enhanced by the use of stable isotope-labeled peptide internal standards to compensate for variation in recovery and the influence of differential matrix effects. Unfortunately, the complexity of proteinaceous matrices, such as plasma, limits the usefulness of this approach to quantification in the mid-nanogram per milliliter range (medium-abundance proteins). This article reviews the current status of LC/MS/MS using selected reaction monitoring for protein quantification, and specifically considers the use of a single antibody to achieve superior enrichment of either the protein target or the released tryptic peptide. Examples of immunoaffinity-assisted LC/MS/MS are reviewed that demonstrate quantitative analysis of low-abundance proteins (subnanogram per milliliter range). A strategy based on this technology is proposed for the expedited evaluation of novel protein biomarkers, which relies on the synergy created from the complementary nature of MS and ELISA.  相似文献   

7.
Although significant progress has been made in protein quantification using mass spectrometry during recent years, absolute protein quantification in complex biological systems remains a challenging task in proteomics. The use of stable isotope-labeled standard peptide is the most commonly used strategy for absolute quantification, but it might not be suitable in all instances. Here we report an alternative strategy that employs a stable isotope-labeled intact protein as an internal standard to absolutely quantify the alcohol dehydrogenase (ADH) expression level in a human liver sample. In combination with a new targeted proteomics approach employing the method of multiple reaction monitoring (MRM), we precisely and quantitatively measured the absolute protein expression level of an ADH isoenzyme, ADH1C1, in human liver. Isotope-labeled protein standards are predicted to be particularly useful for measurement of highly homologous isoenzymes such as ADHs where multiple signature peptides can be examined by MRM in a single experiment.  相似文献   

8.
The involvement of aldo–keto reductases (AKRs) in tumorigenesis is widely reported, but their roles in the pathological process are not generally recognized due to inconsistent measurements of their expression. To overcome this problem, we simultaneously employed real-time PCR to examine gene expression and multiple reaction monitoring (MRM) of mass spectrometry (MS) to examine the protein expression of AKRs in five different hepatic cell lines. These include one relatively normal hepatic cell line, L-02, and four hepatocellular carcinoma (HCC) cell lines, HepG2, HuH7, BEL7402 and SMMC7721. The results of real-time PCR showed that expression of genes encoding the AKR1C family members rather than AKR1A and AKR1B was associated with tumor, and most of genes encoding AKRs were highly expressed in HuH7. Similar observations were obtained through MRM. Different from HuH7, the protein abundance of AKR1A and AKR1B was relatively consistent among the other four hepatic cell lines, while protein expression of AKR1C varied significantly compared to L-02. Therefore, we conclude that the abundant distribution of AKR1C proteins is likely to be associated with liver tumorigenesis, and the AKR expression status in HuH7 is completely different from other liver cancer cell lines. This study, for the first time, provided both overall and quantitative information regarding the expression of AKRs at both mRNA and protein levels in hepatic cell lines. Our observations put the previous use of AKRs as a biomarker into question since it is only consistent with our data from HuH7. Furthermore, the data presented herein demonstrated that quantitative evaluation and comparisons within a protein family at both mRNA and protein levels were feasible using current techniques.  相似文献   

9.
There is a great need for quantitative assays in measuring proteins. Traditional sandwich immunoassays, largely considered the gold standard in quantitation, are associated with a high cost, long lead time, and are fraught with drawbacks (e.g. heterophilic antibodies, autoantibody interference, ''hook-effect'').1 An alternative technique is affinity enrichment of peptides coupled with quantitative mass spectrometry, commonly referred to as SISCAPA (Stable Isotope Standards and Capture by Anti-Peptide Antibodies).2 In this technique, affinity enrichment of peptides with stable isotope dilution and detection by selected/multiple reaction monitoring mass spectrometry (SRM/MRM-MS) provides quantitative measurement of peptides as surrogates for their respective proteins. SRM/MRM-MS is well established for accurate quantitation of small molecules 3, 4 and more recently has been adapted to measure the concentrations of proteins in plasma and cell lysates.5-7 To achieve quantitation of proteins, these larger molecules are digested to component peptides using an enzyme such as trypsin. One or more selected peptides whose sequence is unique to the target protein in that species (i.e. "proteotypic" peptides) are then enriched from the sample using anti-peptide antibodies and measured as quantitative stoichiometric surrogates for protein concentration in the sample. Hence, coupled to stable isotope dilution (SID) methods (i.e. a spiked-in stable isotope labeled peptide standard), SRM/MRM can be used to measure concentrations of proteotypic peptides as surrogates for quantification of proteins in complex biological matrices. The assays have several advantages compared to traditional immunoassays. The reagents are relatively less expensive to generate, the specificity for the analyte is excellent, the assays can be highly multiplexed, enrichment can be performed from neat plasma (no depletion required), and the technique is amenable to a wide array of proteins or modifications of interest.8-13 In this video we demonstrate the basic protocol as adapted to a magnetic bead platform.  相似文献   

10.
Plasma is an important biofluid for clinical research and diagnostics. In the clinic, unpredictable delays—from minutes to hours—between blood collection and plasma generation are often unavoidable. These delays can potentially lead to protein degradation and modification and might considerably affect intact protein measurement methods such as sandwich enzyme-linked immunosorbent assays that bind proteins on two epitopes to increase specificity, thus requiring largely intact protein structures. Here, we investigated, using multiple reaction monitoring mass spectrometry (MRM-MS), how delays in plasma processing affect peptide-centric “bottom-up” proteomics. We used validated assays for proteotypic peptide surrogates of 270 human proteins to analyze plasma generated after whole blood had been kept at room temperature from 0 to 40 h to mimic delays that occur in the clinic. Moreover, we evaluated the impact of different plasma-thawing conditions on MRM-based plasma protein quantitation. We demonstrate that >90% of protein concentration measurements were unaffected by the thawing procedure and by up to 40-h delayed plasma generation, reflected by relative standard deviations (RSDs) of <30%. Of the 159 MRM assays that yielded quantitative results in 60% of the measured time points, 139 enabled a stable protein quantitation (RSD <20%), 14 showed a slight variation (RSD 20–30%), and 6 appeared unstable/irreproducible (RSD > 30%). These results demonstrate the high robustness and thus the potential for MRM-based plasma-protein quantitation to be used in a clinical setting. In contrast to enzyme-linked immunosorbent assay, peptide-based MRM assays do not require intact three-dimensional protein structures for an accurate and precise quantitation of protein concentrations in the original sample.  相似文献   

11.
Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.  相似文献   

12.
Introduction: Post-translational modifications (PTMs) have an important role in the regulation of protein function, localization, and interaction with other molecules. PTMs apply a dynamic control of proteins in both physiological and pathological conditions. The study of disease-specific PTMs allows identifying potential biomarkers and developing effective drugs. Enrichment techniques combined with high-resolution mass spectrometry (MS)/MS analysis provide attractive results on PTM characterization. Selected reaction monitoring/multiple reaction monitoring (SRM/MRM) is a powerful targeted assay for the quantitation and validation of PTMs in complex biological samples.

Areas covered: The most frequent PTMs are described in terms of biological role and analytical methods commonly used to detect them. The applications of SRM/MRM for the absolute quantitation of PTMs are reported, and a specific section is focused on PTM detection in proteins that are involved in the cardiovascular system and heart diseases.

Expert commentary: PTM characterization in relation to disease pathology is still in progress, but targeted proteomics by LC-MS/MS has significantly upgraded our knowledge in the last few years. Advances in enrichment strategies and software tools will facilitate the interpretation of high PTM complexity. Promising studies confirm the great potential of SRM/MRM to study PTMs in the cardiovascular field, and PTMomics could be very useful in the clinical perspective.  相似文献   


13.

Background

In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells.

Method

Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry.

Results

The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 105 and (0.85 ± 0.11) × 105, respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC.

Conclusion

Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-11-43) contains supplementary material, which is available to authorized users.  相似文献   

14.
The strength of the streptavidin/biotin interaction poses challenges for the recovery of biotinylated molecules from streptavidin resins. As an alternative to high-temperature elution in urea-containing buffers, we show that mono-biotinylated proteins can be released with relatively gentle heating in the presence of biotin and 2% SDS/Rapigest, avoiding protein carbamylation and minimizing streptavidin dissociation. We demonstrate the utility of this mild elution strategy in two studies of the human androgen receptor (AR). In the first, in which formaldehyde cross-linked complexes are analyzed in yeast, a mass spectrometry-based comparison of the AR complex using SILAC reveals an association between the androgen-activated AR and the Hsp90 chaperonin, while Hsp70 chaperonins associate specifically with the unliganded complex. In the second study, the endogenous AR is quantified in the LNCaP cell line by absolute SILAC and MRM-MS showing approximately 127,000 AR copies per cell, substantially more than previously measured using radioligand binding.  相似文献   

15.
We compared detection sensitivity and protein sequence coverage of the adenovirus type 5 proteome achievable by liquid chromatography and tandem mass spectroscopy (LC/MS/MS) using three sample preparation and clean up methods. Tryptic digestion was performed on either purified viral proteins or whole virus, and followed by shotgun sequencing using tandem mass spectrometry for peptide identification. We used a recombinant adenovirus type 5 as a test system. The methods included separation of adenoviral proteins by reversed-phase high-performance liquid chromatography followed by tryptic digestion and analysis by LC/MS/MS. Alternatively, the purified whole virus was digested with trypsin and the peptides separated either by one-dimensional (reversed-phase) or by two-dimensional (cation exchange and reversed-phase) chromatography and analyzed by tandem mass spectrometry. A total of 11 protein species were identified from 154 peptides. All of the major viral proteins were found. In addition, two minor proteins, the 23 kDa viral protease and the late L1 protein, were identified for the first time by chromatography based assays. The 23 kDa viral protease, present at only 10 copies per virus, and representing 0.2% of the protein content of the virus, was detected by the 2D LC/MS/MS analysis of the whole virus digest from a sample containing only 70 fmols of the protein. This demonstrates the high sensitivity and selectivity of the method. The 2D LC/MS/MS analysis of the whole virus digest was also able to detect all viral proteins with copy numbers at or above 10/virus particle, with broad coverage of the amino acid sequences. Coverage ranged from 2 to 54%, a majority between 20 and 35%, suggesting the possibility of using this analysis to assess the purity of the virus preparations. This broad coverage may also provide a useful approach to identify posttranslational modifications on the structural proteins of the adenovirus.  相似文献   

16.
A rapid, selective and highly sensitive high performance liquid chromatography–tandem mass spectrometry method (LC–MS/MS) was developed and validated for the determination and pharmacokinetic investigation of eptifibatide in human plasma. Eptifibatide and the internal standard (IS), EPM-05, were extracted from plasma samples using solid phase extraction. Chromatographic separation was performed on a C18 column at a flow rate of 0.5 mL/min. Detection of eptifibatide and the IS was achieved by tandem mass spectrometry with an electrospray ionization (ESI) interface in positive ion mode. Traditional multiple reaction monitoring (MRM) using the transition of m/z 832.6 → m/z 646.4 and m/z 931.6 → m/z 159.4 was performed to quantify eptifibatide and the IS, respectively. The calibration curves were linear over the range of 1–1000 ng/mL with the lower limit of quantitation validated at 1 ng/mL. The intra- and inter-day precisions were within 13.3%, while the accuracy was within ±7.6% of nominal values. The validated LC–MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of eptifibatide after intravenous (i.v.) administration of a 45 μg/kg bolus of eptifibatide to 8 healthy volunteers.  相似文献   

17.
Encheva V  Gharbia SE  Wait R  Begum S  Shah HN 《Proteomics》2006,6(11):3306-3317
Streptococcus pneumoniae is an important human pathogen causing life-threatening invasive diseases such as pneumonia, meningitis and bacteraemia. Despite major advances in our understanding of pneumococcal mechanisms of pathogenicity obtained through genomic studies very little has been achieved on the characterisation of the proteome of this pathogen. The highly complex structure of its cell envelope particularly amongst the various capsular forms enables the cell to resist lysis by conventional mechanical methods. It is therefore highly desirable to develop a cellular lysis and protein solubilisation procedure that minimises protein losses and allows for maximum possible coverage of the proteome of S. pneumoniae. Here we have utilised various combinations of mechanical or enzymatic cell lysis with two protein solubilisation mixtures urea/CHAPS-based mixture or SDS/DTT-based mixture in order to achieve best quality protein profiles using two proteomic technologies surface-enhanced laser desorption ionisation (SELDI) TOF MS and 2-DE. While urea/CHAPS-based mixture combined with freeze/thawing provided enough material for good-quality SELDI TOF MS fingerprints, a combination of mechanical, enzymatic and chemical lysis was needed to be used to successfully extract the desired protein content for 2-DE analysis. The methods chosen were also assessed for reproducibility and tested on various capsular types of S. pneumoniae. As a result, good-quality and reproducible profiles were created using various ProteinChip arrays and more than 800 protein spots were separated on a single 2-D gel of S. pneumoniae. Twenty-five of the most abundant protein spots were identified using LC/MS/MS to create a reference map of S. pneumoniae. The proteins identified included glycolytic enzymes such as glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase, enolase etc. Several fermentation enzymes were also present including two of the components of the arginine deiminase system. Proteins involved in protein synthesis, such as translation factors and ribosomal proteins, as well as several chaperone proteins were also identified.  相似文献   

18.
Accurate cancer biomarkers are needed for early detection, disease classification, prediction of therapeutic response and monitoring treatment. While there appears to be no shortage of candidate biomarker proteins, a major bottleneck in the biomarker pipeline continues to be their verification by enzyme linked immunosorbent assays. Multiple reaction monitoring (MRM), also known as selected reaction monitoring, is a targeted mass spectrometry approach to protein quantitation and is emerging to bridge the gap between biomarker discovery and clinical validation. Highly multiplexed MRM assays are readily configured and enable simultaneous verification of large numbers of candidates facilitating the development of biomarker panels which can increase specificity. This review focuses on recent applications of MRM to the analysis of plasma and serum from cancer patients for biomarker verification. The current status of this approach is discussed along with future directions for targeted mass spectrometry in clinical biomarker validation.  相似文献   

19.
Selected reaction monitoring (SRM) is an accurate quantitative technique, typically used for small-molecule mass spectrometry (MS). SRM has emerged as an important technique for targeted and hypothesis-driven proteomic research, and is becoming the reference method for protein quantification in complex biological samples. SRM offers high selectivity, a lower limit of detection and improved reproducibility, compared to conventional shot-gun-based tandem MS (LC-MS/MS) methods. Unlike LC-MS/MS, which requires computationally intensive informatic postanalysis, SRM requires preacquisition bioinformatic analysis to determine proteotypic peptides and optimal transitions to uniquely identify and to accurately quantitate proteins of interest. Extensive arrays of bioinformatics software tools, both web-based and stand-alone, have been published to assist researchers to determine optimal peptides and transition sets. The transitions are oftentimes selected based on preferred precursor charge state, peptide molecular weight, hydrophobicity, fragmentation pattern at a given collision energy (CE), and instrumentation chosen. Validation of the selected transitions for each peptide is critical since peptide performance varies depending on the mass spectrometer used. In this review, we provide an overview of open source and commercial bioinformatic tools for analyzing LC-MS data acquired by SRM.  相似文献   

20.
We have developed a proteomics technology featuring on-line three-dimensional liquid chromatography coupled to tandem mass spectrometry (3D LC-MS/MS). Using 3D LC-MS/MS, the yeast-soluble, urea-solubilized peripheral membrane and SDS-solubilized membrane protein samples collectively yielded 3019 unique yeast protein identifications with an average of 5.5 peptides per protein from the 6300-gene Saccharomyces Genome Database searched with SEQUEST. A single run of the urea-solubilized sample yielded 2255 unique protein identifications, suggesting high peak capacity and resolving power of 3D LC-MS/MS. After precipitation of SDS from the digested membrane protein sample, 3D LC-MS/MS allowed the analysis of membrane proteins. Among 1221 proteins containing two or more predicted transmembrane domains, 495 such proteins were identified. The improved yeast proteome data allowed the mapping of many metabolic pathways and functional categories. The 3D LC-MS/MS technology provides a suitable tool for global proteome discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号