首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Software advancements in the last several years have had a significant impact on proteomics from method development to data analysis. Herein, we detail a method, which uses our in-house developed software tool termed Skyline, for empirical refinement of candidate peptides from targeted proteins. The method consists of four main steps from generation of a testable hypothesis, method development, peptide refinement, to peptide validation. The ultimate goal is to identify the best performing peptide in terms of ionization efficiency, reproducibility, specificity, and chromatographic characteristics to monitor as a proxy for protein abundance. It is important to emphasize that this method allows the user to perform this refinement procedure in the sample matrix and organism of interest with the instrumentation available. Finally, the method is demonstrated in a case study to determine the best peptide to monitor the abundance of surfactant protein B in lung aspirates.  相似文献   

2.
Introduction: While selected/multiple-reaction monitoring (SRM or MRM) is considered the gold standard for quantitative protein measurement, emerging data-independent acquisition (DIA) using high-resolution scans have opened a new dimension of high-throughput, comprehensive quantitative proteomics. These newer methodologies are particularly well suited for discovery of biomarker candidates from human disease samples, and for investigating and understanding human disease pathways.

Areas covered: This article reviews the current state of targeted and untargeted DIA mass spectrometry-based proteomic workflows, including SRM, parallel-reaction monitoring (PRM) and untargeted DIA (e.g., SWATH). Corresponding bioinformatics strategies, as well as application in biological and clinical studies are presented.

Expert commentary: Nascent application of highly-multiplexed untargeted DIA, such as SWATH, for accurate protein quantification from clinically relevant and disease-related samples shows great potential to comprehensively investigate biomarker candidates and understand disease.  相似文献   


3.
Targeted mass spectrometry‐based proteomics approaches enable the simultaneous and reproducible quantification of multiple protein analytes across numerous conditions in biology and clinical studies. These approaches involve e.g. selected reaction monitoring (SRM) typically conducted on a triple quadrupole mass spectrometer, its high‐resolution variant named pseudo‐SRM (p‐SRM), carried out in a quadrupole coupled with an TOF analyzer (qTOF), and “sequential window acquisition of all theoretical spectra” (SWATH). Here we compared these methods in terms of signal‐to‐noise ratio (S/N), coefficient of variance (CV), fold change (FC), limit of detection and quantitation (LOD, LOQ). We have shown the highest S/N for p‐SRM mode, followed by SRM and SWATH, demonstrating a trade‐off between sensitivity and level of multiplexing for SRM, p‐SRM, and SWATH. SRM was more sensitive than p‐SRM based on determining their LOD and LOQ. Although SWATH has the worst S/N, it enables peptide multiplexing with post‐acquisition definition of the targets, leading to better proteome coverage. FC between breast tumors of different clinical‐pathological characteristics were highly correlated (R2>0.97) across three methods and consistent with the previous study on 96 tumor tissues. Our technical note presented here, therefore, confirmed that outputs of all the three methods were biologically relevant and highly applicable to cancer research.  相似文献   

4.
Boja ES  Rodriguez H 《Proteomics》2012,12(8):1093-1110
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.  相似文献   

5.
李恺  宋雷  石文昊  田喜凤 《生物工程学报》2017,33(11):1859-1868
近年来质谱技术的持续进步促进了靶向蛋白质组的发展,在多反应监测(Multiple reaction monitoring,MRM)靶向蛋白质组定量方法的基础上衍生出平行反应监测(Parallel reaction monitoring,PRM)技术。该技术靶向定量灵敏度和通量更高,重现性也更好,但其对于高复杂性样本在定量速度和深度上均存在一定的局限性。改善PRM定量的色谱方法包括:色谱柱的优化,增加色谱柱内径、降低柱长;色谱洗脱条件的优化,提高液相洗脱流速、缩短洗脱时间;最终建立了一种简单高效的双反相色谱串联PRM靶向蛋白质组定量平台。该平台使用150μm内径和8 cm长的短色谱柱,在800 nL/min的高流速下和35 min有效洗脱梯度内,可实现对293T全细胞裂解液蛋白样本中多达400条低丰度肽段的快速定量。该研究优化了PRM靶向定量方法,将有利于PRM技术的推广,尤其为低丰度蛋白的精准定量提供了一种技术选择。  相似文献   

6.
Quantitation in plasma‐based proteomics necessitates the reproducible removal of highly abundant proteins to enable the less abundant proteins to be visible to the mass spectrometer. We have evaluated immunodepletion (proteoprep20) and enrichment (Bio‐Rad beads), as the current predominant approaches. Label‐free analysis offers an opportunity to estimate the effectiveness of this approach without incorporating chemical labels. Human plasma samples were used to quantitatively assess the reproducibility of these two methods using nano‐LC‐data‐independent acquisition MS. We have selected 18 candidate proteins and a comparison of both methodologies showed that both of the methods were reproducible and fell below 20% residual SD. With the same candidate proteins, individual inter‐day variability for the samples was also processed, allowing us to monitor instrument reproducibility. Overall, a total of 131 proteins were identified by both methods with 272 proteins identified by enrichment and 200 identified by immunodepletion. Reproducibility of measurements of the amount of protein in the processed sample for individual proteins is within analytically acceptable standards for both methodologies. This enables both methods to be used for biomarker studies. However, when sample is limited, enrichment is not suitable as larger volumes (>1.0 mL) are required. In experiments where sample is not limited then a greater number of proteins can be reliably identified using enrichment.  相似文献   

7.
We describe a cell-free approach that employs selected reaction monitoring (SRM) in tandem mass spectrometry to identify and quantitate T-cell epitopes. This approach utilises multiple epitope-specific SRM transitions to identify known T-cell epitopes and an absolute quantitation (AQUA) peptide strategy to afford AQUA. The advantage of a mass spectrometry-based approach over more traditional cell-based assays resides in the robustness and transferability of an SRM approach between laboratories and the ability of this strategy to detect multiple peptides simultaneously without the requirement of epitope-specific reagents such as T-cell lines. Thus, the SRM strategy for epitope quantitation will find application in studies of antigen density, the link between epitope abundance and immunogenicity, the dynamic range of epitope presentation and the abundance of T-cell epitopes in disease.  相似文献   

8.
Oleg V. Krokhin  Vic Spicer 《Proteomics》2016,16(23):2931-2936
The emergence of data‐independent quantitative LC‐MS/MS analysis protocols further highlights the importance of high‐quality reproducible chromatographic procedures. Knowing, controlling and being able to predict the effect of multiple factors that alter peptide RP‐HPLC separation selectivity is critical for successful data collection for the construction of ion libraries. Proteomic researchers have often regarded RP‐HPLC as a “black box”, while vast amount of research on peptide separation is readily available. In addition to obvious parameters, such as the type of ion‐pairing modifier, stationary phase and column temperature, we describe the “mysterious” effects of gradient slope, column size and flow rate on peptide separation selectivity. Retention time variations due to these parameters are governed by the linear solvent strength (LSS) theory on a peptide level by the value of its slope S in the basic LSS equation—a parameter that can be accurately predicted. Thus, the application of shallower gradients, higher flow rates, or smaller columns will each increases the relative retention of peptides with higher S‐values (long species with multiple positively charged groups). Simultaneous changes to these parameters that each drive shifts in separation selectivity in the same direction should be avoided. The unification of terminology represents another pressing issue in this field of applied proteomics that should be addressed to facilitate further progress.  相似文献   

9.
Large-scale proteomics applications using SRM analysis on triple quadrupole mass spectrometers present new challenges to LC-MS/MS experimental design. Despite the automation of building large-scale LC-SRM methods, the increased numbers of targeted peptides can compromise the balance between sensitivity and selectivity. To facilitate large target numbers, time-scheduled SRM transition acquisition is performed. Previously published results have demonstrated incorporation of a well-characterized set of synthetic peptides enabled chromatographic characterization of the elution profile for most endogenous peptides. We have extended this application of peptide trainer kits to not only build SRM methods but to facilitate real-time elution profile characterization that enables automated adjustment of the scheduled detection windows. Incorporation of dynamic retention time adjustments better facilitate targeted assays lasting several days without the need for constant supervision. This paper provides an overview of how the dynamic retention correction approach identifies and corrects for commonly observed LC variations. This adjustment dramatically improves robustness in targeted discovery experiments as well as routine quantification experiments.  相似文献   

10.
Selected or multiple reaction monitoring is a targeted mass spectrometry method (S/MRM-MS), in which many peptides are simultaneously and consistently analyzed during a single liquid chromatography-mass spectrometry (LC-S/MRM-MS) measurement. These capabilities make S/MRM-MS an attractive method to monitor a consistent set of proteins over various experimental conditions. To increase throughput for S/MRM-MS it is advantageous to use scheduled methods and unfractionated protein extracts. Here, we established the practically measurable dynamic range of proteins reliably detectable and quantifiable in an unfractionated protein extract from a human cell line using LC-S/MRM-MS. Initially, we analyzed S/MRM transition peak groups in terms of interfering signals and compared S/MRM transition peak groups to MS1-triggered MS2 spectra using dot-product analysis. Finally, using unfractionated protein extract from human cell lysate, we quantified the upper boundary of copies per cell to be 35 million copies per cell, while 7500 copies per cell represents a lower boundary using a single 35 min linear gradient LC-S/MRM-MS measurement on a current, standard commercial instrument.  相似文献   

11.
Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.  相似文献   

12.
Reversed phase microcolumns have been widely used for peptide pretreatment to desalt and remove interferences before tandem LC–MS in proteomics studies. However, few studies have characterized the effects of experimental parameters as well as column characteristics on the composition of identified peptides. In this study, several parameters including the concentration of ACN in washing buffer, the microcolumn's purification effect, the peptide recovery rate, and the dynamic‐binding capacity were characterized in detail, based upon stable isotope labeling by amino acids in a cell culture quantitative approach. The results showed that peptide losses can be reduced with low ACN concentration in washing buffers resulting in a recovery rate of approximately 82%. Furthermore, the effects of ACN concentration and loading amount on the properties of identified peptides were also evaluated. We found that the dynamic‐binding capacity of the column was approximately 26 μg. With increased loading amounts, more hydrophilic peptides were replaced by hydrophobic peptides.  相似文献   

13.
14.
Pachl F  Fellenberg K  Wagner C  Kuster B 《Proteomics》2012,12(9):1328-1332
Isobaric tagging using reagents such as tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ) have become popular tools for mass spectrometry based quantitative proteomics. Because the peptide quantification information is collected in tandem mass spectra, the accuracy and precision of this method largely depend on the resolution with which precursor ions can be selected for the fragmentation and the specificity of the generated reporter ion. The latter can constitute an issue if near isobaric ion signals are present in such spectra because they may distort quantification results. We propose a simple remedy for this problem by identifying reporter ions via the accurate mass differences within a single tandem mass spectrum instead of applying fixed mass error tolerances for all tandem mass spectra. Our results show that this leads to unambiguous reporter ion identification and complete removal of interfering signals. This mode of data processing is easily implemented in software and offers advantages for protein quantification based on few peptides.  相似文献   

15.
A sensitivity methodology for nonlinear delay systems arising in one class of cellular HIV infection models is presented. Theoretical foundations for a typical sensitivity investigation and illustrative computations are given.  相似文献   

16.
EphA2 receptor tyrosine kinase and the human cytoplasmic protein tyrosine phosphatase (HCPTP) are overexpressed in a number of epithelial cancers. Overexpressed EphA2 in these cancers shows a significant decrease in phosphotyrosine content which results in suppression of receptor signaling and endocytosis and an increase in metastatic potential. The decreased phosphotyrosine content of EphA2 has been associated with decreased contact with its ligand, ephrin A1 and dephosphorylation by HCPTP. Potential specificity of the two HCPTP variants for tyrosines on EphA2 has not been investigated. We have used a mass spectrometry assay to measure relative rates of dephosphorylation for the two HCPTP variants at phosphotyrosine sites associated with control of the EphA2 kinase activity or interaction with downstream targets. Our results suggest that although both variants dephosphorylate the EphA2 receptor, the rate and specificity of dephosphorylation for specific tyrosines are different for HCPTP-A and HCPTP-B. The SAM domain tyrosine Y960 which has been implicated in downstream PI3K signaling is dephosphorylated exclusively by HCPTP-B. The activation loop tyrosine (Y772) which directly controls kinase activity is dephosphorylated about six times faster by HCPTP-A. In contrast, the juxtamembrane tyrosines (Y575, Y588 and Y594) which are implicated in both control of kinase activity and downstream signaling are dephosphorylated by both variants with similar rates. This difference in preference for dephosphorylation sites on EphA2 not only illuminates the different roles of the two variants of the phosphatase in EphA2 signaling, but also explains why both HCPTP variants are highly conserved in most mammals.  相似文献   

17.
New disease specific biomarkers, especially for cancer, are urgently needed to improve individual diagnosis, prognosis, and treatment selection, that is, for personalized medicine. Genetic mutations that affect protein function drive cancer. Therefore, the detection of such mutations represents a source of cancer specific biomarkers. Here we confirm the implementation of the mutant protein specific immuno‐SRM (where SRM is selective reaction monitoring) mass spectrometry method of RAS proteins reported by Wang et al. [Proc. Natl. Acad. Sci. USA 2011, 108, 2444–2449], which exploits an antibody to simultaneously capture the different forms of the target protein and the resolving power and sensitivity of LC‐MS/MS and improve the technique by using a more sensitive mass spectrometer. The mutant form G12D was quantified by SRM on a QTRAP 5500 mass spectrometer and the MIDAS workflow was used to confirm the sequence of the targeted peptides. This assay has been applied to quantify wild type and mutant RAS proteins in patient tumors, xenografted human tissue, and benign human epidermal tumors at high sensitivity. The limit of detection for the target proteins was as low as 12 amol (0.25 pg). It requires low starting amounts of tissue (ca.15 mg) that could be obtained from a needle aspiration biopsy. The described strategy could find application in the clinical arena and be applied to the study of expression of protein variants in disease.  相似文献   

18.
Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide‐based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an “empirical rule for linearly correlated peptide selection (ERLPS)” in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label‐free to O18/O16‐labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide‐based quantitative proteomics over a large dynamic range.  相似文献   

19.
The TaqMan assay, a quantitative real-time polymerase chain reaction (PCR), was developed to target the ToxR gene (toxR) of Vibrio vulnificus. The toxR of V. vulnificus was cloned and sequenced. Based on these results, we designed specific primers and a probe for use in the quantitative PCR assay. Twenty-nine strains of V. vulnificus that were obtained from various sources produced a single PCR product. The amount of final amplification product and threshold cycle number were the same among the strains. We used the method to detect V. vulnificus in seawater and oyster samples. We developed standard curves to quantitate V. vulnificus numbers using the PCR from seawater and oyster samples. The standard curves were not different from that of the pure culture of V. vulnificus. We found the assay was very sensitive detecting as few as 10 microbes per milliliter of seawater and oyster homogenate. Moreover, we evaluated the TaqMan assay to detect V. vulnificus in seawater samples. The numbers of V. vulnificus counted by the TaqMan assay were similar to those by a culture method in almost samples. The TaqMan assay was performed within 2 h compared to days using the culture method. The results indicate the TaqMan assay method used in this study was rapid, effective and quantitative for monitoring V. vulnificus contamination in seawater and seafoods such as oysters.  相似文献   

20.
绵羊红细胞敏感性对补体结合试验的最佳反应时间   总被引:1,自引:0,他引:1  
正补体结合试验(CFT)是一种经典的抗原、抗体检测方法,其敏感性、特异性均较高,不仅可用于诊断各种传染病,也可用于鉴定病原体,是免疫学上一个应用较广泛的重要试验[1]。在布鲁氏菌病(布病)的血清学诊断方法中,CFT被世界动物卫生组织(OIE)认可为布病血清学确诊的经典标准方法[2]。在CFT实际操作中经常发现,使用不同保存时间的绵羊红细胞(SRBC)滴定同一批次溶血素和补体时,结果存在较大差异,有时效价可能相差  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号