首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Gram-negative bacteria, quorum-sensing (QS) communication is mostly mediated by N-acyl homoserine lactones (N-AHSL). The diversity of bacterial populations that produce or inactivate the N-AHSL signal in soil and tobacco rhizosphere was investigated by restriction fragment length polymorphism (RFLP) analysis of amplified 16S DNA and DNA sequencing. Such analysis indicated the occurrence of N-AHSL-producing strains among the alpha-, beta- and gamma-proteobacteria, including genera known to produce N-AHSL (Rhizobium, Sinorhizobium and Pseudomonas) and novel genera with no previously identified N-AHSL-producing isolates (Variovorax, Sphingomonas and Massilia). The diversity of N-AHSL signals was also investigated in relation to the genetic diversity of the isolates. However, N-AHSL-degrading strains isolated from soil samples belonged to the Bacillus genus, while strains isolated from tobacco rhizospheres belonged to both the Bacillus genus and to the alpha subgroup of proteobacteria, suggesting that diversity of N-AHSL-degrading strains may be modulated by the presence of the tobacco plant. Among these rhizospheric isolates, novel N-AHSL-degrading genera have been identified (Sphingomonas and Bosea). As the first simultaneous analysis of both N-AHSL-degrading and -producing bacterial communities in a complex environment, this study revealed the coexistence of bacterial isolates, belonging to the same genus or species that may produce or degrade N-AHSL.  相似文献   

2.
Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 106 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected the bottom rot disease severity.  相似文献   

3.
The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) have been isolated from the rhizospheres of plant species with varied biological traits; however, it is not known what phytochemicals promote contaminant degradation. One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the phenolic compounds—morin, caffeic acid, and protocatechuic acid—appear to be linked to bacterial degradation of 3- and 4-ring PAHs in the rhizosphere.  相似文献   

4.
A microbial mixed culture able to degrade naphtha solvent, a model of hydrocarbon aromatic mixture, was isolated from a hydrocarbon-polluted soil. Composition of the population was monitored by phenotypic and molecular methods applied on soil DNA, on whole enrichment culture DNA, and on 85 isolated strains. Strains were characterized for their 16S rDNA restriction profiles and for their random amplified polymorphic DNA profiles. Catabolic capabilities were monitored by phenotypic traits and by PCR assays for the presence of the catabolic genes methyl mono-oxygenase ( xylA, M), catechol 2,3 dioxygenase (xylE) and toluene dioxygenase (todC1) of TOL and TOD pathways. Different haplotypes belonging to Pseudomonas putida, Ps. aureofaciens and Ps. aeruginosa were found to degrade aromatic compounds and naphtha solvent. The intrinsic catabolic activity of the microbial population of the polluted site was detected by PCR amplification of the xylE gene directly from soil DNA.  相似文献   

5.
Bacterial strains were isolated from the rhizosphere of three populations of the Ni-hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum (A. pintodasilvae; M, S, and L), one population of Ni-hyperaccumulator A. serpyllifolium subsp. malacitanum (A. malacitanum; SB), and one population of the non-hyperaccumulator A. serpyllifolium subsp. serpyllifolium (A. serpyllifolium; SN). Isolates were characterized genotypically by BOX-PCR genomic DNA fingerprinting and comparative sequence analysis of partial 16S rRNA gene, and phenotypically by their Ni tolerance (0-10 mM), presence of plant growth promoting traits (indoleacetic acid (IAA)-, siderophore-, or organic acid-production, and phosphate solubilization) or capacity to produce biosurfactants. Among the collection of rhizobacteria, 84 strains were selected (according to their BOX-PCR profiles and phenotypic characteristics) to assess their ability to modify Ni extractability from Ni-rich (serpentine) soils. Metabolites produced by 13 of the isolates mobilized soil Ni (originating from the rhizosphere of both Ni-hyperaccumulators and non-hyperaccumulator). In contrast, Ni extraction using culture medium filtrates which had supported the growth of 29 strains was significantly reduced. The remaining strains had no effect on Ni mobility. Bacterial induced Ni mobilization was not related to Ni resistance or the phenotypic traits tested. Isolates with potential use in phytoremediation techniques will be further studied in a plant-microorganism-soil system.  相似文献   

6.
Cyanide and cyanide-containing compounds from anthropogenic sources can be an environmental threat because of their potential toxicity. A remediation option for cyanide-contaminated soil may be through the use of plants and associated rhizosphere microorganimsms that have the ability to degrade cyanide compounds. Cyanogenic plant species are known to produce cyanide, but they also have the ability to degrade these compounds. In addition, the presence of these plants in soil may result in an increase in cyanide degrading microorganisms in the rhizosphere. Two cyanogenic species (Sorghum bicolor and Linum usitassium) and a noncyanogenic species (Panicum virgatum) were selected for a 200-day phytoremediation study to assess their potential use for removal of cyanide from soil. For both cyanogenic species, approximately 85% of the iron cyanide in soil was removed, whereas very little iron cyanide was removed in the unvegetated control or in the presence of Panicum virgatum. In addition, the activity of microbial communities in the rhizosphere of cyanogenic plants was higher than in cyanide-contaminated soil from unvegetated soil.  相似文献   

7.
Rhizosphere population dynamics of seven Pseudomonas fluorescens and Pseudomonas putida strains isolated from rhizospheres of various agricultural plants were studied on potato (Solanum tuberosum L.) in field soil under controlled environmental conditions. Rhizosphere populations of two strains (B10 and B4) were quantitatively related to initial seed piece inoculum levels when plants were grown at −0.3 bar matric potential. At a given inoculum level, rhizosphere populations of strain B4 were consistently greater than those of strain B10. In vivo growth curves on 4-cm root tip-proximal segments indicated that both strains grew at similar rates in the potato rhizosphere, but large populations of strain B10 were not maintained at 24°C after 7 h, whereas those of strain B4 were maintained for at least 40 h. Although both strains grew more rapidly in the rhizosphere at 24°C than at 12°C, their rhizosphere populations after seed piece inoculation were generally greater at 12 or 18°C, indicating that in vivo growth did not solely determine rhizosphere populations in these studies. In vitro osmotolerance of seven Pseudomonas strains (including strains B4 and B10) was correlated with their abilities to establish stable populations in the rhizosphere of potato. Stability of rhizosphere populations of the Pseudomonas strains studied here was maximized at low (i.e., 12°C) soil temperatures. These results indicate that Pseudomonas strains differ in their capacity to maintain stable rhizosphere populations in association with potato. This capacity, distinct from the ability to grow in the rhizosphere, may limit the establishment of rhizosphere populations under some environmental conditions.  相似文献   

8.
Goddard  V.J  Bailey  M.J.  Darrah  P.  Lilley  A.K.  Thompson  I.P. 《Plant and Soil》2001,232(1-2):181-193
The potential for developing a reliable strategy for selecting rhizosphere competent bacteria, based on an improved understanding of the community diversity and population dynamics of fluorescent pseudomonads, was investigated. Isolates from a collection of over 690 fluorescent pseudomonads, obtained from sugar beet and wheat plants grown in field soils in laboratory microcosms, were genotypically and phenotypically characterised. RFLP rRNA analysis (ribotyping) revealed that the sampled population was composed of 385 related but distinct ribotypes. Most ribotypes were isolated only once and represented a transient colonising population. However, representatives of 26 ribotypes were detected more often, of which five were isolated from rhizosphere soils sampled 7 months after the first sampling. Comparative phenotypic analysis of isolates (motility, antibiotic resistance and production, adherence, fatty acid composition, substrate utilisation patterns) demonstrated that the ability to utilise organic acids as carbon sources correlated with rhizosphere competence. Single inoculum and competitive colonisation studies in planted microcosms confirmed rhizosphere competence, but also demonstrated synergistic interactions. The colonisation ability and population densities of transient strains were significantly increased when co-inoculated with rhizosphere competent isolates. These data demonstrate potential cross-feeding and combined niche exploitation, rather than direct competition, confirming the multi-factorial nature of rhizosphere competence in diverse fluorescent pseudomonad communities. They also highlight the need to consider the use of mixed inocula for plant growth promotion and the systematic selection of strains for effective biotechnological exploitation.  相似文献   

9.
The genetically engineered transposon TnPCB, contains genes (bph) encoding the biphenyl degradative pathway. TnPCB was stably inserted into the chromosome of two different rhizosphere pseudomonads. One genetically modified strain, Pseudomonas fluorescens F113pcb, was characterized in detail and found to be unaltered in important parameters such as growth rate and production of secondary metabolites. The expression of the heterologous bph genes in F113pcb was confirmed by the ability of the genetically modified microorganism to utilize biphenyl as a sole carbon source. The introduced trait remained stable in laboratory experiments, and no bph-negative isolates were found after extensive subculture in nonselective media. The bph trait was also stable in nonselective rhizosphere microcosms. Rhizosphere competence of the modified F113pcb was assessed in colonization experiments in nonsterile soil microcosms on sugar beet seedling roots. F113pcb was able to colonize as efficiently as a marked wild-type strain, and no decrease in competitiveness was observed. In situ expression of the bph genes in F113pcb was found when F113pcb bearing a bph'lacZ reporter fusion was inoculated onto sugar beet seeds. This indicates that the bph gene products may also be present under in situ conditions. These experiments demonstrated that rhizosphere-adapted microbes can be genetically manipulated to metabolize novel compounds without affecting their ecological competence. Expression of the introduced genes can be detected in the rhizosphere, indicating considerable potential for the manipulation of the rhizosphere as a self-sustaining biofilm for the bioremediation of pollutants in soil. Rhizosphere bacteria such as fluorescent Pseudomonas spp. are ecologically adapted to colonize and compete in the rhizosphere environment. Expanding the metabolic functions of such pseudomonads to degrade pollutants may prove to be a useful strategy for bioremediation.  相似文献   

10.
Fluorescent pseudomonads have evolved an efficient strategy of iron uptake based on the synthesis of the siderophore pyoverdine and its relevant outer membrane receptor. The possible implication of pyoverdine synthesis and uptake on the ecological competence of a model strain (Pseudomonas fluorescens C7R12) in soil habitats was evaluated using a pyoverdine minus mutant (PL1) obtained by random insertion of the transposon Tn5. The Tn5 flanking DNA was amplified by inverse PCR and sequenced. The nucleotide sequence was found to show a high level of identity with pvsB, a pyoverdine synthetase. As expected, the mutant PL1 was significantly more susceptible to iron starvation than the wild-type strain despite its ability to produce another unknown siderophore. As with the wild-type strain, the mutant PL1 was able to incorporate the wild-type pyoverdine and five pyoverdines of foreign origin, but at a significantly lower rate despite the similarity of the outer membrane protein patterns of the two strains. The survival kinetics of the wild-type and of the pyoverdine minus mutant, in bulk and rhizosphere soil, were compared under gnotobiotic and non-gnotobiotic conditions. In gnotobiotic model systems, both strains, when inoculated separately, showed a similar survival in soil and rhizosphere, suggesting that iron was not a limiting factor. In contrast, when inoculated together, the bacterial competition was favorable to the pyoverdine producer C7R12. The efficient fitness of PL1 in the presence of the indigenous microflora, even when coinoculated with C7R12, is assumed to be related to its ability to uptake heterologous pyoverdines. Altogether, these results suggest that pyoverdine-mediated iron uptake is involved in the ecological competence of the strain P. fluorescens C7R12.  相似文献   

11.
Although antibiotic production may contribute significantly to microbial fitness, there is limited information on the ecology of antibiotic-producing microbial populations in soil. Indeed, quantitative information on the variation in frequency and intensity of specific antibiotic inhibitory and resistance abilities within soil microbial communities is lacking. Among the streptomycetes, antibiotic production is highly variable and resistance to antibiotics is highly specific to individual microbial strains. The objective of this work was to genetically and phenotypically characterize a reference collection of streptomycetes for use in distinguishing inhibition and resistance phenotypes of field-collected microbes. Specifically, we examined inhibition and resistance abilities of all isolates in all possible pairwise combinations, genetic relatedness using BOX-PCR and 16S rDNA sequence analyses, nutrient utilization profiles, and antibiotic induction among all possible three-way combinations of isolates. Each streptomycete isolate possessed a unique set of phenotypic and genetic characteristics. However, there was little correspondence between phenotypic and genetic traits. This collection of reference isolates provides the potential for distinguishing 1024 inhibition and resistance phenotypes in field-collected microbes. Relationships between the genetic and phenotypic characteristics examined may provide preliminary insight into the distinct strategies that microbes use in optimizing their fitness in natural environments.  相似文献   

12.
A long-term field experiment was carried out to estimate the efficiency of bioaugmentation in combination with phytoremediation for oil shale chemical industry solid waste dump area remediation. Soil samples for microbiological and chemical analysis were collected during 3 years after bacterial biomass application. Microbial communities in soil samples were analysed using both culture-based and molecular methods. The survival of the introduced bacterial strains was confirmed by cultivation-based Box-PCR genomic fingerprints and denaturing gradient gel electrophoresis fingerprinting of the 16S rRNA and lmPH genes. The introduced bacterial strains as well as corresponding catabolic genes were recovered several years after biomass application, predominantly from the rhizosphere of birches. Soil samples from bioaugmented plots showed an elevated potential for degradation of phenolic compounds even 40 months after treatment. Based on our results we can conclude that the introduced Pseudomonas strains both survived, and their metabolic traits have persisted at the contaminated site over a long period of time.  相似文献   

13.
Summary Heterotrophic nitrogen fixation by rhizosphere soil samples from 20 rice cultivars grown under uniform field conditions was estimated employing15N-tracer technique. Rhizosphere soil samples from different rice cultivars showed striking differences with regard to their ability to incorporate15N2. Rhizosphere samples from rice straw-amended (3 and 6 tons/ha) soil exhibited more pronounced nitrogen-fixing activity than the samples from unamended soil; while the activity of the rhizosphere samples from soils receiving combined nitrogen (40 and 80 kg N/ha) was relatively low. However, the inhibitory effect of combined nitrogen was not expressed in the presence of rice straw at 6 tons/ha. Results suggest that plant variety, application of combined nitrogen and organic matter influence the rhizosphere nitrogen fixation.  相似文献   

14.
Plant rhizosphere and internal tissues may constitute a relevant habitat for soil bacteria displaying high catabolic versatility towards xenobiotic aromatic compounds. Root exudates contain various molecules that are structurally related to aromatic xenobiotics and have been shown to stimulate bacterial degradation of aromatic pollutants in the rhizosphere. The ability to degrade specific aromatic components of root exudates could thus provide versatile catabolic bacteria with an advantage for rhizosphere colonization and growth. In this work, Cupriavidus pinatubonensis JMP134, a well-known aromatic compound degrader (including the herbicide 2,4-dichlorophenoxyacetate, 2,4-D), was shown to stably colonize Arabidopsis thaliana and Acacia caven plants both at the rhizoplane and endorhizosphere levels and to use root exudates as a sole carbon and energy source. No deleterious effects were detected on these colonized plants. When a toxic concentration of 2,4-D was applied to colonized A. caven, a marked resistance was induced in the plant, showing that strain JMP134 was both metabolically active and potentially beneficial to its host. The role for the β-ketoadipate aromatic degradation pathway during plant root colonization by C. pinatubonensis JMP134 was investigated by gene inactivation. A C. pinatubonensis mutant derivative strain displayed a reduced ability to catabolise root exudates isolated from either plant host. In this mutant strain, a lower competence in the rhizosphere of A. caven was also shown, both in gnotobiotic in vitro cultures and in plant/soil microcosms.  相似文献   

15.
Studies on adaptations of Metarhizium anisopliae to life in the soil   总被引:1,自引:0,他引:1  
Metarhizium anisopliae is an important fungal model for elucidating the basis of entomopathogenicity. A field trial conducted in 2000 with a strain expressing the gfp gene as a marker unexpectedly identified the rhizosphere (the root-soil interface) as the site where insects and pathogen most likely interact. However, the implications of rhizosphere events in maintaining large populations of M. anisopliae remain unclear. The extent to which plant ecology is impacted by the rhizosphere competence of M. anisopliae is also uncertain, but it could be considerable with implicit co-evolutionary implications. Rhizosphere competence may need to be considered as a feature for selecting fungal strains for biocontrol and this raises the possibility of managing the rhizosphere microflora to achieve insect control. Rhizosphere competence also raises some concerns, particularly if it resulted in introduced or hypervirulent transgenic strains persisting in the environment. It is hoped that field trials and other studies currently underway to extend our knowledge of host-pathogen-plant interactions will help identify containment strategies as well as lead to new and important ways of exploiting insect pathogenic fungi for crop protection.  相似文献   

16.
Trichoderma species are commonly used as biological control agents against phytopathogenic fungi and some strains are able to produce metabolites that enhance plant growth. In the current study we evaluated the production of potential growth-promoting metabolites, rhizosphere competence and endophytism for 101 isolates of Trichoderma from Colombia, and assessed the relationship of these factors to the enhancement of early stages of growth on bean seedlings. Twenty percent of these Trichoderma strains were able to produce soluble forms of phosphate from phosphoric rock. Only 8% of the assessed strains showed consistent ability to produce siderophores to convert ferric iron to soluble forms by chelation. Sixty percent of isolates produced indole-3-acetic acid (IAA) or auxin analogues. The production of any of these metabolites was a characteristic of specific strains, as the ability to produce these metabolites varied greatly within species. Moreover, the production of these substances did not correlate with enhanced growth on bean seedlings, measured as the combined increase in length of roots and aerial parts in the V3 stage of growth. Seven Trichoderma isolates significantly improved the growth of bean seedlings. However, metabolite production varied widely in these seven strains, and some isolates did not produce any of the assessed growth-promoting metabolites. Results indicated that growth was enhanced in the presence of rhizosphere competent and endophytic strains of Trichoderma, and these characteristics were strain-specific and not characteristic for species.  相似文献   

17.
The ability of Pseudomonas fluorescens F113 to produce the antibiotic 2,4-diacetylphloroglucinol (DAPG) is a key factor in the biocontrol of the phytopathogenic fungus Pythium ultimum by this strain. In this study, a DAPG-producing strain (rifampin-resistant mutant F113Rif) was compared with a nearly isogenic DAPG-negative biosynthesis mutant (Tn5::lacZY derivative F113G22) in terms of the ability to colonize and persist in the rhizosphere of sugarbeets in soil microcosms during 10 plant growth-harvest cycles totaling 270 days. Both strains persisted similarly in the rhizosphere for 27 days, regardless of whether they had been inoculated singly onto seeds or coinoculated in a 1:1 ratio. In order to simulate harvest and resowing, the roots were removed from the soil and the pots were resown with uninoculated sugarbeet seeds for nine successive 27-day growth-harvest cycles. Strains F113Rif and F113G22 performed similarly with respect to colonizing the rhizosphere of sugarbeet, even after nine cycles without reinoculation. The introduced strains had a transient effect on the size of the total culturable aerobic bacterial population. The results indicate that under these experimental conditions, the inability to produce DAPG did not reduce the ecological fitness of strain F113 in the rhizosphere of sugarbeets.  相似文献   

18.
J. Vermeer  M. E. McCully 《Planta》1982,156(1):45-61
Some of the nodal roots of field-grown Zea mays L. bear a persistent soil sheath along their entire length underground except for a glistening white soil-free zone which extends approximately 25 mm behind the root cap. These roots are generally unbranched. The histology of the surface and the rhizosphere of the sheathed roots has been examined by correlated light and electron microscopy. All mature peripheral tissues including root hairs, are largely intact and apparently alive where enclosed by the soil sheath. The sheath is permeated by extracellular mucilage which is histochemically distinct from the mucilage at the epidermal surface, but similar to that produced by the root cap. Isolated cells resembling those sloughed from the sides of the root cap persist in the soil sheath along the length of these roots. Fresh whole mounts of the sheath show that these detached cells may be alive and streaming vigorously even at some distance from the root cap. Rhizosphere mucilage is associated with the isolated cells.To whom correspondence should be addressed  相似文献   

19.
The plant rhizosphere is an important soil ecological environment for plant-microorganism interactions, which include colonization by a variety of microorganisms in and around the roots that may result in symbiotic, endophytic, associative, or parasitic relationships within the plant, depending on the type of microorganisms, soil nutrient status, and soil environment. Rhizosphere competence may be attributable to the differences in the extent of bacterial attachment to the root surface. We present results of the effect of various factors on the attachment to bean (Phaseolus vulgaris) and soybean (Glycine max) roots of some bacterial species of agronomic importance, such as Rhizobium tropici, Rhizobium etli, Ensifer fredii (homotypic synonym Sinorhizobium fredii), and Azospirillum brasilense; as well as the attachment capability of the plant growth promoting rhizobacteria Pseudomonas fluorescens and Chryseobacterium balustinum. Additionally, we have studied various bacterial traits, such as autoaggregation and flagella movements, which have been postulated to be important properties for bacterial adhesion to surfaces. The lack of mutual incompatibility between rhizobial strains and C. balustinum has been demonstrated in coinoculation assays.  相似文献   

20.
AIMS: Tomato foot and root rot (TFRR), caused by Fusariumoxysporum f. sp. radicis-lycopersici (Forl), is an economically important disease of tomato. The aim of this study was to develop an efficient protocol for the isolation of bacteria, which controls TFRR based on selection of enhanced competitive root-colonizing bacteria from total rhizosphere soil samples. METHODS AND RESULTS: A total of 216 potentially enhanced bacterial strains were isolated from 17 rhizosphere soil samples after applying a procedure to enrich for enhanced root tip colonizers. Amplified ribosomal DNA restriction analysis, in combination with determination of phenotypic traits, was introduced to evaluate the presence of siblings. One hundred sixteen strains were discarded as siblings. Thirty-eight strains were discarded as potential pathogens based on the sequence of their 16S rDNA. Of the remaining strains, 24 performed equally well or better than the good root colonizer Pseudomonas fluorescens WCS365 in a competitive tomato root tip colonization assay. Finally, these enhanced colonizers were tested for their ability to control TFRR in stonewool, which resulted in seven new biocontrol strains. CONCLUSIONS: The new biocontrol strains, six Gram-negative and one Gram-positive bacteria, were identified as three Pseudomonas putida strains and one strain each of Delftia tsuruhatensis, Pseudomonas chlororaphis, Pseudomonas rhodesiae and Paenibacillus amylolyticus. SIGNIFICANCE AND IMPACT OF THE STUDY: We describe a fast method for the isolation of bacteria able to suppress TFRR in stonewool, an industrial plant growth substrate. The procedure minimizes the laborious screens that are a common feature in the isolation of biocontrol strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号