首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the relevance of rat liver regeneration (LR) to acute hepatic failure (AHF), Rat Genome 230 2.0 Array was used to detect their gene expression profiles in this study, and the reliability of the detection results was confirmed by real-time-PCR. 1012 genes were found to be significantly changed in AHF occurrence and 948 genes in LR. Hierarchical clustering analysis showed that physiological activities of AHF and those of LR had no time correlation. Hierarchical clustering analysis (which is performed to group genes based on the similarity of expression patterns) showed that physiological activities of AHF and those of LR had no time correlation. K-means clustering analysis (which is used to check the difference in the relevant predictor variables between different groups is significant or not) demonstrated that gene expression trend of C1 group (genes relate to categories of stimulus–response and cell apoptosis, etc.) in AHF and in LR was extremely similar, that those of their C2 group (categories of regulation of homeostasis and hormone stimulation, etc.) were contrary, and that those of their C3 (material and energy metabolism and oxidation reduction, etc.), C4 (Cell cycle-related genes) and C5 (cell proliferation-related genes) groups were also similar with the gene expression changes of LR more abundant. GO classifications and functional clustering analysis (which was used to statistics the numbers or composition of proteins or genes at a function level) revealed that cellular processes including immune response, inflammatory reaction, cell migration and adhesion, etc. were increased both in AHF and in LR, whereas material and energy metabolism were decreased. Of them, stimulus response, inflammatory reaction and regulation of apoptosis, etc. were stronger in AHF occurrence than in LR, but ion homeostasis, hormonal response, regulation of cell division and proliferation, etc. were weaker in AHF occurrence. Gene expression changes and physiological activities of AHF and those of LR not only have similarities but also differences.  相似文献   

2.
3.
细胞外基质相关基因在大鼠肝再生中表达模式分析   总被引:1,自引:1,他引:0  
李红蕾  陈晓光  张富春  马纪  徐存拴 《遗传》2008,30(3):333-340
细胞外基质具有维持细胞极性、调节细胞粘附、增殖、组织器官形态、发生、分化等功能。为了进一步在基因转录水平了解细胞外基质在大鼠肝再生中变化和作用, 用搜集网站资料和查阅相关论文等方法获得细胞外基质基因, 用Rat Genome 230 2.0芯片检测它们在大鼠再生肝中表达情况, 用真、假手术比较方法确定肝再生相关基因。初步证实上述97个基因与肝再生相关。其中, 肝再生启动(部分肝切除(parital hepatectomy, PH)后0.5~4 h)、G0/G1过渡(PH后4~6 h)、细胞增殖(PH后6~66 h)、细胞分化和组织结构功能重建(PH后72~168 h)等4个阶段起始表达的基因数为49、19、73、5, 基因总表达的次数为84、51、369、144, 表明相关基因主要在肝再生启动阶段起始表达, 在不同阶段发挥作用。它们表达的相似性分为均上调、上调占优势、均下调、下调占优势、上调和下调相近等5类, 涉及38、21、21、10和7个基因, 共上调411次, 下调186次, 分为24种表达模式, 表明肝再生中细胞生理生化活动具有阶段性、多样性和复杂性。根据细胞外基质相关基因在肝再生中表达变化推测, 肝再生前期纤粘连蛋白形成相关基因表达增强, 肝再生中期胶原形成相关基因表达增强。  相似文献   

4.
5.
Xu CS  Chang CF 《Amino acids》2008,34(1):91-102
Summary. Amino acids (AA) are components of protein and precursors of many important biological molecules. To address effects of the genes associated with metabolism and transport of AA and their derivatives during rat liver regeneration (LR), we firstly obtained the above genes by collecting databases data and retrieving related thesis, and then analyzed their expression profiles during LR using Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the gene expression difference between partial hepatectomy (PH) and sham-operation (SO) rat livers. It was approved that 134 genes associated with metabolism of AA and their derivatives and 26 genes involved in transport of them were LR-associated. The initially and totally expressing number of these genes occurring in initial phase of LR (0.5–4 h after PH), G0/G1 (4–6 h after PH), cell proliferation (6–66 h after PH), cell differentiation and structure-function reconstruction of liver tissue (72–168 h after PH) were respectively 76, 17, 79, 5 and 162, 89, 564, 195, illustrating that these LR-associated genes were initially expressed mainly in initial stage, and functioned in different phases. Frequencies of up-regulation and down-regulation of them being separately 564 and 357 demonstrated that genes up-regulated outnumbered those down-regulated. Categorization of their expression patterns into 22 types implied the diversity of cell physiological and biochemical activities. According to expression changes and patterns of the above-mentioned genes in LR, it was presumed that histidine biosynthesis in the metaphase and anaphase, valine metabolism in the anaphase, and metabolism of glutamate, glutamine, asparate, asparagine, methionine, alanine, leucine and aromatic amino acid almost were enhanced in the whole LR; as for amino acid derivatives, transport of neutral amino acids, urea, γ-aminobutyric acid, betaine and taurine, metabolism of dopamine, heme, S-adenosylmethionine, thyroxine, and biosynthesis of hydroxyproline, nitric oxide, orinithine, polyamine, carnitine, selenocysteine were augmented during the entire liver restoration. Above results showed that metabolism and transport of AA and their derivates were necessary in liver regeneration. Authors’ address: Prof. Dr. C. S. Xu, College of Life Science, No. 46, Jianshe RD, Henan, Xinxiang 453007, China  相似文献   

6.
7.
8.
Guo GB  Xu CS 《Amino acids》2008,34(4):597-604
In this study, 55 of the organic acid metabolism-involved genes were primarily confirmed to be associated with liver regeneration (LR) by bioinformatics and gene expression profiling analysis. Number of the initially and totally expressed genes occurring in initiation phase of LR, G0/G1, cell proliferation, cell differentiation and liver tissue structure-function reconstruction were 21, 5, 33, 1 and 40, 20, 174, 44, respectively, illustrating that genes were initially expressed mainly in initiation stage, and worked in different phases. 151 times up-regulation and 114 times down-regulation as well as 14 types of expression patterns showed the diversification and complication of genes expression changes. It is inferred from the above gene expression changes and patterns that acetate biosynthesis enhanced at forepart, propionate biosynthesis at forepart, prophase and early metaphase, pyruvate biosynthesis at forepart, metaphase and anaphase, succinate biosynthesis at forepart and anaphase; malate biosynthesis in metaphase and N-acetylneuraminate biosynthesis at 36, 66 and 96 h. Whereas, carnitine biosynthsis attenuates at forepart and prophase, enhancement at middle metaphase; isocitrate in the forepart, quinolinate at forepart and early metaphase, creatine at early metaphase and fumarate at anaphase perform the restrained biosynthesis, respectively; catabolisms of propionate and pyruvate were depressed in metaphase.  相似文献   

9.
10.
Specific gene expression patterns in liver cirrhosis   总被引:1,自引:0,他引:1  
Liver cirrhosis (LC) is a complex disease that can develop into hepatocellular carcinoma (HCC). In an effort to investigate genetic differences between LC and HCC, we used cDNA microarray analysis to characterize the gene expression profiles in LC and HCC tissues. Consistent differences were observed among the expression patterns in LC, HCC, and normal liver tissues. Interestingly, the expression patterns of LC without tumor association (LCT) were also readily distinguished from those of LC tissues near hepatic tumor tissues (near-tumor tissue, NTT). Moreover, 25 cirrhosis-specific genes could be used to divide the NTT samples into two groups: inflammatory active cirrhosis (NTTa) and inflammatory inactive cirrhosis (NTTi). We found that NTTa samples showed gene expression patterns similar to those of the LCT and HCC groups, whereas the expression patterns of the NTTi group were significantly different from those of the LCT, NTTa, and HCC groups. Finally, we selected two of the 25 LC-specific genes and showed that these markers could be used to successfully discriminate among the different LC subtypes. Collectively, these novel results allow the identification of new genetic subgroups of LC and provide new candidate genes for use as early markers for active cirrhosis and HCC.  相似文献   

11.
肌细胞分化基因与大鼠肝再生的相关性分析   总被引:1,自引:0,他引:1  
肌细胞是组织器官的重要组成部分。为在基因转录水平了解肌细胞分化相关基因在大鼠肝再生中的作用,本文用搜集网站资料和查阅相关论文等方法获得上述基因.用Rat Genome2302.0芯片检测它们在大鼠肝再生(liver regeneration,LR)中表达情况,用比较真、假手术基因表达的差异性方法确定肝再生相关基因。初步证实上述基因中52个基因与肝再生相关。根据肝再生中基因表达的时间相关性将上述基因聚合为0.5-1h;2—12h;16、30、42、96h;18—24、36、48—60h;66—72、120-168h等5类,表达上调和下调的基因数分别为8和10,24和8,21和24,53和64,28和36。它们表达的相似性分为均上调、上调占优势、均下调、下调占优势、上调和下调次数相近等5类,涉及15、10、17、7和3个基因,共上调表达143次、下调136次,分为8类表达方式。表明肌细胞分化相关基因表达变化多样和复杂。根据上述结果推测,肝再生中成肌细胞和平滑肌细胞分化增强:骨骼肌和心肌细胞分化相关基因参与肝再生的生理生化活动。  相似文献   

12.
13.
为了解大鼠肝再生中8种肝脏细胞的丝氨酸族氨基酸代谢相关基因转录谱, 文章用Percoll密度梯度离心结合免疫磁珠分选分离大鼠的8种再生肝细胞, 用Rat Genome 230 2.0芯片等检测它们中丝氨酸族氨基酸代谢相关基因的表达变化, 用Cluster和Treeview等软件分析上述基因在肝再生中表达模式, 用生物信息学和系统生物学等方法分析上述细胞中丝氨酸族氨基酸代谢活动。结果表明, 在27个发生有意义表达变化的基因中, 肝细胞、胆管上皮细胞、卵圆细胞、肝星形细胞、窦内皮细胞、库普弗细胞、陷窝细胞、树突状细胞的基因数分别为13、16、11、14、13、11、12、14, 相应细胞的上调、下调和上/下调的基因数分别为7、6和0, 2、10和4, 2、8和1, 8、3和3, 6、5和2, 4、6和1, 2、10和0, 6、6和2。总的来看, 肝再生中各细胞的表达下调基因占优势, 但在肝再生启动阶段, 肝星形细胞和窦内皮细胞的表达上调基因占优势。上述丝氨酸族氨基酸代谢相关基因转录谱预示丝氨酸族氨基酸的合成主要在肝再生启动阶段的肝细胞、肝星形细胞、窦内皮细胞和库普弗细胞中增强, 它们的降解主要在肝再生进展阶段的肝细胞、胆管上皮细胞、陷窝细胞和树突状细胞中进行。  相似文献   

14.
15.
Comprehensive analysis of the changes in gene expression during liver regeneration was carried out by using an in-house microarray composed of 2,304 distinct mouse liver cDNA clones. Mice were subjected to partial two-thirds hepatectomy, and changes in mRNA levels were monitored up to 48 h. Of the 2,304 genes analyzed, 496 genes showed expression levels measurable at all time points after the partial hepatectomy. 317 genes were up- or down-regulated 2-fold or more at least at one time point during liver regeneration and were classified into eight clusters based on their expression patterns. With a more stringent cut-off value of +/-2 S.D., 68 genes were listed and were classified into five clusters. In these two analyses with different clustering criteria, functionally categorized genes showed similar cluster distributions. Genes involved in protein synthesis and posttranslational processing were significantly enriched in the cluster characterized by rapid gene activation and subsequent persistence. This suggests the importance of modulating the efficiency of protein supply and/or altering the composition of protein population from the early phase of hepatocyte proliferation. Genes for two major liver functions, i.e. plasma protein secretion and intermediate metabolism were enriched in distinct clusters exhibiting the features of gradual gene activation and sustained repression, respectively. Therefore, these genes are differentially regulated during the regeneration, possibly leading to changes in the flow of amino acids and energy from enzyme proteins to plasma proteins in their synthesis. Thus, clustering analysis of expression patterns of functionally classified genes gave insights into mechanism and pathophysiology of liver regeneration.  相似文献   

16.
Extensive gene expression analysis was carried out after a 0, 4, 36, 72, 96 h short interval successive partial hepatectomy (SISPH) was performed. A total of 185 elements were identified as differing by more than two-fold in their expression levels at one or more time points. Of these 185 elements, 103 were up-regulated, 82 were down-regulated and 86 elements were unreported genes. Quite a few genes were previously unknown to be involved in liver regeneration (LR). Using cluster and general analysis, we found that the genes at five time points of the SISPH share eight different types of different expression profiles and eight distinct temporal induction or suppression patterns. A comparison of the gene expression in SISPH with that after PH found that 41 genes were specifically altered in SISPH, and 144 genes were simultaneously up-regulated or down-regulated in SISPH and after PH, but they were present in different amounts at the different time points. The conclusions are that (i) microarrays combined with suppressive subtractive hybridization (SSH) can effectively identify genes involved in LR on a large scale; (ii) more genes were up-regulated than down-regulated; (iii) there are fewer abundantly expressed genes than those with increased levels of 2–5 fold.  相似文献   

17.
After partial hepatectomy (PH), the remnant paren-chyma can completely recover lost liver mass and function in about one week[1,2]. Although adult hepa-tocytes are normally quiescent, they are readily primed to pass from G0 to G1 phase within 2―6 h after PH. The first peak of DNA synthesis appears 24 h after PH, while cell division peaks at 36 h. The liver cells then enter a second cell cycle, and redifferentiation and reconstruction of structure and function[3―6] take place. A great nu…  相似文献   

18.
细胞连接相关基因在大鼠肝再生中表达模式   总被引:2,自引:0,他引:2  
细胞连接是组织、器官形成的基础。为在基因转录水平了解紧密连接、粘附连接、粘着斑和间隙连接相关基因在肝再生中作用,本文用搜集网站资料和查阅相关论文等方法获得上述基因,用Rat Genome 230 2.0芯片检测它们在大鼠再生肝中表达情况,将3次检验结果相同或相似、在肝再生中发生有意义表达变化、真手术组和假手术组表达差异显著的基因视为肝再生相关基因。初步证实上述4种细胞连接中79、53、109和53个基因与肝再生相关。其中,肝再生启动(部分肝切除后0.5~4h)、G0/G1过渡(PH后4~6h)、细胞增殖(部分肝切除后6~66h)、细胞分化和组织结构功能重建(部分肝切除后72~168h)等4个阶段起始表达的基因数和基因的总表达次数为124、43、122、10和249、145、957、306。表明相关基因主要在肝再生启动阶段起始表达,在不同阶段发挥作用。它们共上调972次,下调540次,表明肝再生中大多数细胞连接相关基因表达加强,少数基因表达降低。它们表达的相似性分为均上调、上调占优势、均下调、下调占优势、上调和下调相近等5类,涉及102、38、73、27和16个基因,它们表达的时间相关性分为0.5和1h、2h、4和6h、8和12h、16h、18和48h、24h、30和42h、36h、54和60h、66和72h、96h、120h、144和168h等14组,表明肝再生中细胞生理生化活动具有阶段性。它们的表达模式分为41类,表明肝再生中细胞生理生化活动具有多样性和复杂性。根据肝再生中基因表达变化和表达模式推测,肝再生早期和前期间隙连接形成增强,晚中期和后期间隙连接形成减少;早期、前期和后期粘着斑形成增强;紧密连接和粘附连接的形成贯穿于整个肝再生。  相似文献   

19.
To study the gene expression profiles between immunologically injured liver cell and normal liver cell of mice and to screen on a large scale the differentially expressed genes associated with the formation of liver injury, the experimental mice were randomly divided into the normal group for controlling and the immunologically liver-injured group induced by BCG and LPS. The liver mRNA of the two groups were extracted respectively and reversely-transcribed to cDNA with the incorporation of different fluorescence (Cy3, Cy5) labeled dUTP as the hybridization probes. The mixed probes were hybridized to the cDNA microarray chips. The fluorescent signal results were acquired by scanner ScanArray 4000 and analyzed with software GenePix Pro 3.0. Among the 14112 target genes, 293 genes were found to be significantly differentially expressed, in which 188 genes were up-regulated and 105 genes were down-regulated. Based on the analysis of biological functions of those differentially expressed genes, it was indicated that the occurrence and development of mouse liver damage induced by BCG and LPS were highly correlated with the processes of immune reactions, cell synthesis, metabolism, apoptosis and transportation in liver cell, which might be quite important for elucidating the regulatory network of gene expression associated with the liver damage, also important for finally discovering the pathogenic mechanisms of immunological liver damage.  相似文献   

20.
Gene expression profile in immunologically injured liver cell of mice   总被引:3,自引:0,他引:3  
To study the gene expression profiles between immunologically injured liver cell and normal liver cell of mice and to screen on a large scale the differentially expressed genes associated with the formation of liver injury,the experimental mice were randomly divided into the normal group for controlling and the immunologically liver-injured group induced by BCG and LPS.The liver mRNA of the two groups were extracted respectively and reversely-transcribed to cDNA with the incorpora-tion of different fluorescence(Cy3,Cy5) labeled dUTP as the hybridization probes.The mixed probes were hybridized to the cDNA microarray chips.The fluorescent signal results were acquired by scanner ScanArray 4000 and analyzed with software GenePix Pro 3.0.Among the 14112 target genes,293 genes were found to be significantly differentially expressed,in which 188 genes were up-regulated and 105 genes were down-regulated.Based on the analysis of biological functions of those differentially expressed genes,it was indicated that the occurrence and development of mouse liver damage induced by BCG and LPS were highly correlated with the processes of immune reac-tions,cell synthesis,metabolism,apoptosis and transportation in liver cell,which might be quite im-portant for elucidating the regulatory network of gene expression associated with the liver damage,also important for finally discovering the pathogenic mechanisms of immunological liver damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号