共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bioactive compounds produced by cyanobacteria 总被引:7,自引:0,他引:7
Cyanobacteria produce a large number of compounds with varying bioactivities. Prominent among these are toxins: hepatotoxins such as microcystins and nodularins and neurotoxins such as anatoxins and saxitoxins. Cytotoxicity to tumor cells has been demonstrated for other cyanobacterial products, including 9-deazaadenosine, dolastatin 13 and analogs. A number of compounds in cyanobacteria are inhibitors of proteases — micropeptins, cyanopeptolins, oscillapeptin, microviridin, aeruginosins- and other enzymes, while still other compounds have no recognized biological activities. In general cyclic peptides and depsipeptides are the most common structural types, but a wide variety of other types are also found: linear peptides, guanidines, phosphonates, purines and macrolides. The close similarity or identity in structures between cyanobacterial products and compounds isolated from sponges, tunicates and other marine invertebrates suggests the latter compounds may be derived from dietary or symbiotic blue-green algae. 相似文献
3.
Nitrogen fixation by marine cyanobacteria 总被引:3,自引:0,他引:3
Zehr JP 《Trends in microbiology》2011,19(4):162-173
Discrepancies between estimates of oceanic N(2) fixation and nitrogen (N) losses through denitrification have focused research on identifying N(2)-fixing cyanobacteria and quantifying cyanobacterial N(2) fixation. Previously unrecognized cultivated and uncultivated unicellular cyanobacteria have been discovered that are widely distributed, and some have very unusual properties. Uncultivated unicellular N(2)-fixing cyanobacteria (UCYN-A) lack major metabolic pathways including the tricarboxylic acid cycle and oxygen-evolving photosystem II. Genomes of the oceanic N(2)-fixing cyanobacteria are highly conserved at the DNA level, and genetic diversity is maintained by genome rearrangements. The major cyanobacterial groups have different physiological and ecological constraints that result in highly variable geographic distributions, with implications for the marine N-cycle budget. 相似文献
4.
5.
J O Previato L Mendon?a-Previato C Jones R Wait B Fournet 《The Journal of biological chemistry》1992,267(34):24279-24286
Aqueous phenol extraction of the lower trypanosomatid Leptomonas samueli released into the aqueous layer a chloroform/methanol/water-soluble glycophosphosphingolipid fraction. Alkaline degradation and purification by gel filtration chromatography resulted in a tetrasaccharide (phosphatidylinositol (PI)-oligosaccharide A), and a pentasaccharide (PI-oligosaccharide B), each containing 2 mol of 2-aminoethylphosphonate and 1 mol of phosphate. Nuclear magnetic resonance spectroscopy and fast atom bombardment-mass spectrometry suggested that the structure of PI-oligosaccharide A is [formula: see text] and that of PI-oligosaccharide B is as shown. [formula: see text] Both compounds contain an inositol unit linked to ceramide via a phosphodiester bridge. The major aliphatic components of the ceramide portion are stearic acid, lignoceric acid, and C20-phytosphingosine. These novel glycolipids fall within the glycosylated phosphatidylinositol (GPI) family, since they contain the core structure Man alpha (1-->4)GlcNH2 alpha (1-->6)myo-inositol-1-PO4, which is also found in the glycoinositolphospholipids and lipophosphoglycan of Leishmania spp., the L. major promastigote surface protease, the glycosylphosphatidylinositol anchor of Trypanosoma brucei variant surface glycoprotein, and the lipopeptidophosphoglycan of Trypanosoma cruzi. The glycophosphosphingolipids of Leptomonas have features in common with the glycolipids of both Leishmania and T. cruzi, resembling the former by the alpha (1-->3) linkage of mannose to the GPI core, while the 2-aminoethylphosphonate substituent on O-6 of glucosamine and the presence of ceramide in place of glycerol lipids is more reminiscent of T. cruzi. Thus these data lend some support to the hypothesis that both T. cruzi and Leishmania evolved from a Leptomonas-like ancestor. 相似文献
6.
Many marine bacteria demonstrate antibiotic activity against organisms of terrestrial origin. Low molecular weight antibiotics have been extracted and, in some cases, purified, but few attempts have been made to isolate high molecular weight antibiotics produced by marine bacteria. In the study reported here, a high molecular weight antibiotic was extracted from whole cells ofAlteromonas strain P18 (NCMB 1890) grown on 2216E medium. Purification included ammonium sulfate precipitation, ultracentrifugation, chromatography on DEAE cellulose, and gel filtration on Ultrogel. A rapid method for measuring specific activity of the antibiotic was developed. 相似文献
7.
8.
Identification and characterization of four proteases produced by Streptococcus suis 总被引:6,自引:0,他引:6
Streptococcus suis is an important worldwide swine pathogen. In this study, we investigated the production of proteases by S. suis serotype 2. Proteases were identified and characterized using chromogenic and fluorogenic assays and zymography. An Arg-aminopeptidase with a molecular mass of 55 kDa was found to be both cell-associated and extracellular. Cell-associated chymotrypsin-like and caseinase activities, belonging to the serine- and metalloprotease classes respectively, were also detected. Lastly, a dipeptidyl peptidase IV (DPP IV) with a molecular mass of 70 kDa was detected in both whole cells and culture supernatants of S. suis serotype 2. Arg-aminopeptidase, caseinase and DPP IV activities were detected in all strains of S. suis serotype 2 tested whereas the chymotrypsin-like activity was only detected in European virulent strains of serotype 2. The optimum pH for all four proteases was between 6 and 8, and the optimum temperature ranged from 25 to 42 degrees C. This is the first report on the production of proteases by S. suis. Further investigations will determine the possible contribution of these proteases in the pathogenicity of S. suis serotype 2. 相似文献
9.
Bodour AA Guerrero-Barajas C Jiorle BV Malcomson ME Paull AK Somogyi A Trinh LN Bates RB Maier RM 《Applied and environmental microbiology》2004,70(1):114-120
Herein we report the structure and selected properties of a new class of biosurfactants that we have named the flavolipids. The flavolipids exhibit a unique polar moiety that features citric acid and two cadaverine molecules. Flavolipids were produced by a soil isolate, Flavobacterium sp. strain MTN11 (accession number AY162137), during growth in mineral salts medium, with 2% glucose as the sole carbon and energy source. MTN11 produced a mixture of at least 37 flavolipids ranging from 584 to 686 in molecular weight (MW). The structure of the major component (23%; MW = 668) was determined to be 4-[[5-(7-methyl-(E)-2-octenoylhydroxyamino)pentyl]amino]-2-[2-[[5-(7-methyl-(E)-2-octenoylhydroxyamino)pentyl]amino]-2-oxoethyl]-2-hydroxy-4-oxobutanoic acid. The partially purified flavolipid mixture isolated from strain MTN11 exhibited a critical micelle concentration of 300 mg/liter and reduced surface tension to 26.0 mN/m, indicating strong surfactant activity. The flavolipid mixture was a strong and stable emulsifier even at concentrations as low as 19 mg/liter. It was also an effective solubilizing agent, and in a biodegradation study, it enhanced hexadecane mineralization by two isolates, MTN11 (100-fold) and Pseudomonas aeruginosa ATCC 9027 (2.5-fold), over an 8-day period. The flavolipid-cadmium stability constant was measured to be 3.61, which is comparable to that for organic ligands such as oxalic acid and acetic acid. In summary, the flavolipids represent a new class of biosurfactants that have potential for use in a variety of biotechnological and industrial applications. 相似文献
10.
Phycoerythrins of marine unicellular cyanobacteria. III. Sequence of a class II phycoerythrin 总被引:7,自引:0,他引:7
The genes for the alpha and beta subunits of a novel six bilin-bearing (class II) phycoerythrin were cloned from Synechococcus sp. WH8020 and sequenced. The cloned genes (mpeA and mpeB) were detected by homology with the genes for C-phycoerythrin from Pseudanabaena sp. PCC7409. The mpe locus occurs once in the genome and is arranged similarly to that of many other phycobiliproteins, with mpeA shortly 3' of mpeB. Sequence comparison suggests that this phycoerythrin (and perhaps all class II phycoerythrins) occupy a branch of the phycoerythrin family separate from five-chromophore per alpha beta (class I) phycoerythrins, C-phycoerythrin, and B-phycoerythrin. The position of the sixth chromophore of the class II phycoerythrin of WH8020 was determined by comparison of the amino acid sequence of the chromopeptides (Ong, L. J., and Glazer, A. N. (1991) J. Biol Chem. 266, 9515-9527) with the sequence deduced from the gene. This located the chromophore at residue 75 of the alpha subunit, very close to the alpha-83 chromophore in the primary structure and, presumably, in the three-dimensional structure. 相似文献
11.
Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under seawater conditions: a non-reversible effect 总被引:3,自引:0,他引:3
Marino Roxanne Howarth Robert W. Chan Francis Cole Jonathan J. Likens Gene E. 《Hydrobiologia》2003,500(1-3):277-293
The trace element molybdenum is a central component of several enzymes essential to bacterial nitrogen metabolism, including nitrogen fixation. Despite reasonably high dissolved concentrations (for a trace metal) of molybdenum in seawater, evidence suggests that its biological reactivity and availability are lower in seawater than in freshwater. We have previously argued that this difference is related to an inhibition in the uptake of molybdate (the thermodynamically stable form of molybdenum in oxic natural waters) by sulfate, a stereochemically similar ion. Low molybdenum availability may slow the growth rate of nitrogen-fixing cyanobacteria, and in combination with an ecological control such as grazing by zooplankton, keep fixation rates very low in even strongly nitrogen-limited coastal marine ecosystems. Here we present results from a seawater mesocosm experiment where the molybdenum concentration was increased 10-fold under highly nitrogen-limited conditions. The observed effects on nitrogen-fixing cyanobacterial abundance and nitrogen-fixation inputs were much smaller than expected. A follow-up experiment with sulfate and molybdenum additions to freshwater microcosms showed that sulfate (at seawater concentrations) greatly reduced nitrogen fixation by cyanobacteria and that additions of molybdenum to the levels present in the seawater mesocosm experiment only slightly reversed this effect. In light of these results, we re-evaluated our previous work on the uptake of radio-labeled molybdenum by lake plankton and by cultures of heterocystic cyanobacteria. Our new interpretation indicates that sulfate at saline estuarine levels (>8–10 mM) up to seawater (28 mM) concentrations does inhibit molybdenum assimilation. However, the maximum molybdenum uptake rate (V
max) was a function of the sulfate concentration, with lower V
max values at higher sulfate levels. This indicates that this inhibition is not fully reversed at some saturating level of molybdenum, as assumed in a simple competitive inhibition model. A multi-enzyme, mixed kinetics model with two or more uptake enzyme systems activated in response to the environmental sulfate and molybdate conditions may better explain the repressive effect of sulfate on Mo-mediated processes such as nitrogen fixation. 相似文献
12.
Chengxu Cao Yiming Liu Yang Li Yan Zhang Yue Zhao Rina Wu Junrui Wu 《Glycoconjugate journal》2020,37(3):307-317
The aim of this study was to characterize the exopolysaccharide (EPS) produced by Bacillus velezensis SN-1 (B. velezensis SN-1) (EPS-SN-1), which was isolated from the fermented Da jiang. The microbe made crude exopolysaccharides EPS-SN-1 was produced throughout the bacterial growth period, and the highest yield (2.7 g/L) was obtained with sucrose as the carbon source. As per high performance liquid chromatography (HPLC), EPS-SN-1 is a heteropolysaccharide consisting of glucose, mannose and fructose, with a high molecular weight of 2.21 × 105 Da. FTIR spectra further indicated the presence of hydroxyl and carbonyl groups, and NMR analysis confirmed both α- and β-glycosidic bonds. Furthermore, differential scanning calorimetry (DSC) showed that EPS-SN-1 has high thermal stability with fusion point of 270.7 °C. Finally, EPS-SN-1 demonstrated strong antioxidant capacity via its ability to scavenge hydroxyl radical (•OH), 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical, ABTS radical (ABTS•+) and oxygen radical (O2−•). Taken together, EPS-SN-1 is a promising natural antioxidant and probiotic with potential applications in the food industry. 相似文献
13.
Degradation of crude oil by marine cyanobacteria 总被引:6,自引:0,他引:6
C. Raghukumar V. Vipparty J. David D. Chandramohan 《Applied microbiology and biotechnology》2001,57(3):433-436
The marine cyanobacteria Oscillatoria salina Biswas, Plectonema terebrans Bornet et Flahault and Aphanocapsa sp. degraded Bombay High crude oil when grown in artificial seawater nutrients as well as in plain natural seawater. Oil removal was measured by gravimetric and gas chromatographic methods. Around 45-55% of the total fractions of crude oil (containing 50% aliphatics, 31% waxes and bitumin, 14% aromatics and 5% polar compounds) were removed in the presence of these cultures within 10 days. Between 50% and 65% of pure hexadecane (model aliphatic compound) and 20% and 90% of aromatic compounds (anthracene and phenantherene) disappeared within 10 days. Mixed cultures of the three cyanobacterial species removed over 40% of the crude. Additionally, these cultures formed excellent cyanobacterial mats when grown in mixed cultures, and thus have the potential for use in mitigating oil pollution on seashores, either individually or in combination. 相似文献
14.
Esquenazi E Coates C Simmons L Gonzalez D Gerwick WH Dorrestein PC 《Molecular bioSystems》2008,4(6):562-570
Marine cyanobacteria and sponges are prolific sources of natural products with therapeutic applications. In this paper we introduce a mass spectrometry based approach to characterize the spatial distribution of these natural products from intact organisms of differing complexities. The natural product MALDI-TOF-imaging (npMALDI-I) approach readily identified a number of metabolites from the cyanobacteria Lyngbya majuscula 3L and JHB, Oscillatoria nigro-viridis, Lyngbya bouillonii, and a Phormidium species, even when they were present as mixtures. For example, jamaicamide B, a well established natural product from the cyanobacterium Lyngbya majuscula JHB, was readily detected as were the ions that correspond to the natural products curacin A and curazole from Lyngbya majuscula 3L. In addition to these known natural products, a large number of unknown ions co-localized with the different cyanobacteria, providing an indication that this method can be used for dereplication and drug discovery strategies. Finally, npMALDI-I was used to observe the secondary metabolites found within the sponge Dysidea herbacea. From these sponge data, more than 40 ions were shown to be co-localized, many of which were halogenated. The npMALDI-I data on the sponge indicates that, based on the differential distribution of secondary metabolites, sponges have differential chemical micro-environments within their tissues. Our data demonstrate that npMALDI-I can be used to provide spatial distribution of natural products, from single strands of cyanobacteria to the very complex marine assemblage of a sponge. 相似文献
15.
Hayashida-Soiza G Uchida A Mori N Kuwahara Y Ishida Y 《Journal of applied microbiology》2008,105(5):1672-1677
Aims: To purify and characterize compounds with antimicrobial activity from Pseudoalteromonas haloplanktis inhibition (INH) strain. Methods and Results: The P. haloplanktis isolated from a scallop hatchery was used to analyse antibacterial activities. Crude extracts were obtained with ethyl acetate of the cultured broth, after separation of bacterial cells, and assays against six strains of marine bacteria and nine clinically important pathogenic bacteria. The active compounds were purified from ethyl acetate extracts, by a combination of SiO2 column and thin layer chromatography. Two active fractions were isolated, and chemical structures of two products from the major one were unambiguously identified as isovaleric acid (3-methylbutanoic acid) and 2-methylbutyric acid (2-methylbutanoic acid), by comparing their mass spectra and 1H- and 13C-nuclear magnetic resonance spectra to those of authentic compounds. Conclusions: In the antibacterial activity of P. haloplanktis INH strain, extra cell compounds are involucred, mainly isovaleric and 2-methylbutyric acids. Significance and Impact of the Study: Production of antimicrobial compounds by marine micro-organisms has been widely reported; however, the efforts not always are conducted to purification and applications of these active compounds. This study is a significant contribution to the knowledge of compounds unique from marine bacteria as potential sources of new drugs in the pharmacological industry. 相似文献
16.
Mizutani K Okamoto I Fujita K Yamamoto K Hirose M 《Bioscience, biotechnology, and biochemistry》2004,68(2):376-383
Ovotransferrin is an egg white protein with complex disulfide and bilobal structures, which is derived from the same gene as chicken serum transferrin. We demonstrate here the structural and functional characteristics of bilobal ovotransferrin, produced at a high level using Pichia pastoris expression system. The recombinant protein was secreted into the medium, and the secretion signal peptide was processed correctly. The secretion level was almost 100 mg/l culture and the yield after purification by two-step anion exchange chromatography was 57 mg/l. The CD spectrum and fluorescence spectra indicate the correct folding of the recombinant protein. The analyses for the Fe3+ binding ability by urea-PAGE and visible absorption spectrum revealed that two Fe3+ sites exist in a recombinant ovotransferrin molecule as in the egg white protein. Endoglycosidases, such as endo-beta-N-acetylglucosaminidase H (Endo-H), peptide:N-glycosidase F (PNGaseF), and endo-beta-N-acetylglucosaminidase from Mucor hiemalis, showed differential activities for the native Fe3+-loaded, native Fe3+-free, and denatured forms of recombinant ovotransferrin; only the first enzyme displayed the cleavage ability for all the ovotransferrin forms. The results from the enzyme specificity and from the molecular weight difference for the intact and deglycosylated proteins were consistent with the view that recombinant ovotransferrin have one N-linked carbohydrate chain which mainly consists of two GlcNac and 10 mannoses. 相似文献
17.
Cyanobacteria are one of the most successful and oldest forms of life that are present on Earth. They are prokaryotic photoautotrophic microorganisms that colonize so diverse environments as soil, seawater, and freshwater, but also stones, plants, or extreme habitats such as snow and ice as well as hot springs. This diversity in the type of environment they live in requires a successful adaptation to completely different conditions. For this reason, cyanobacteria form a wide range of different secondary metabolites. In particular, the cyanobacteria living in both freshwater and sea produce many metabolites that have biological activity. In this review, we focus on metabolites called siderophores, which are low molecular weight chemical compounds specifically binding iron ions. They have a relatively low molecular weight and are produced by bacteria and also by fungi. The main role of siderophores is to obtain iron from the environment and to create a soluble complex available to microbial cells. Siderophores play an important role in microbial ecology; for example, in agriculture they support the growth of many plants and increase their production by increasing the availability of Fe in plants. The aim of this review is to demonstrate the modern use of physico-chemical methods for the detection of siderophores in cyanobacteria and the use of these methods for the detection and characterization of the siderophore-producing microorganisms. Using high-performance liquid chromatography-mass spectrometry (LC-MS), it is possible not only to discover new chemical structures but also to identify potential interactions between microorganisms. Based on tandem mass spectrometry (MS/MS) analyses, previous siderophore knowledge can be used to interpret MS/MS data to examine both known and new siderophores. 相似文献
18.
Streptococcus uberis is one of the principal causative agents of bovine mastitis. In this study, we report that S. uberis strain 42 produces a lantibiotic, nisin U, which is 78% identical (82% similar) to nisin A from Lactococcus lactis. The 15.6-kb nisin U locus comprises 11 open reading frames, similar in putative functionality but differing in arrangement from that of the nisin A biosynthetic cluster. The nisin U producer strain exhibits specific resistance (immunity) to nisin U and cross-resistance to nisin A, a finding consistent with the 55% sequence similarity of their respective immunity peptides. Homologues of the nisin U structural gene were identified in several additional S. uberis strains, and in each case cross-protective immunity was expressed to nisin A and to the other producers of nisin U and its variants. To our knowledge, this is the first report both of characterization of a bacteriocin by S. uberis, as well as of a member of the nisin family of peptides in a species other than L. lactis. 相似文献
19.
Ten aspergilli (five each from marine and terrestrial habitats) were screened for siderophore production. All test isolates produced siderophores as indicated by a positive reaction in the FeCl(3) test, chrome azurol sulphonate assay, and chrome azurol sulphonate agar plate test. Further, the test isolates were compared for their siderophore production potential and chemical characteristics. Examination of the chemical nature of the siderophores revealed that all test isolates produced hydroxamate siderophores that were trihydroxamate hexadentates. Wide-spread occurrence of siderophores in marine isolates indicate their functional role in maintaining overall productivity of coastal waters. Among all test aspergilli, marine Aspergillus versicolor was found to be the largest siderophore producer (182.5 microg/mL desferrioxamine mesylate equivalent), least siderophore production was recorded in a marine strain of Aspergillus niger (3.5 microg/mL desferrioxamine mesylate equivalent). 相似文献
20.
Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021 总被引:4,自引:0,他引:4
The structure of a novel expolysaccharide obtained from a mutant of Rhizobium meliloti strain Rm1021 was elucidated by a combination of enzymic, chemical, and spectroscopic methods. The polysaccharide is composed of a disaccharide repeating-unit, beta-D-Glcp-(1----3)-alpha-D-Galp-(1----3), having a 6-O-acetyl group attached to most D-glucose residues and a 4,6-O-(1-carboxyethylidene) group attached to every D-galactose residue. 相似文献