首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Simultaneous quantification of multiple proteins by selected reaction monitoring (SRM) has several applications in cell signaling studies including embryo proteomics. However, concerns have recently been raised over the specificity of SRM assays due to possible ion redundancy and/or sequence similarity of selected peptide with multiple non‐related proteins. In this Viewpoint article, we discuss some simple measures that can increase our confidence in the accuracy of SRM scans used in proteomic experiments. At least in embryonic samples from porcine species, these measures were found to be useful in validating MS‐identified differentially expressed proteins. Among the nine proteins analyzed by SRM assay, all the proteins that were found to be up‐ or down‐regulated in MS experiment were also faithfully up‐ or down‐regulated in SRM assay.  相似文献   

2.

Background

Serum biomarkers can improve diagnosis and treatment of malignant pleural mesothelioma (MPM). However, the evaluation of potential new serum biomarker candidates is hampered by a lack of assay technologies for their clinical evaluation. Here we followed a hypothesis-driven targeted proteomics strategy for the identification and clinical evaluation of MPM candidate biomarkers in serum of patient cohorts.

Results

Based on the hypothesis that cell surface exposed glycoproteins are prone to be released from tumor-cells to the circulatory system, we screened the surfaceome of model cell lines for potential MPM candidate biomarkers. Selected Reaction Monitoring (SRM) assay technology allowed for the direct evaluation of the newly identified candidates in serum. Our evaluation of 51 candidate biomarkers in the context of a training and an independent validation set revealed a reproducible glycopeptide signature of MPM in serum which complemented the MPM biomarker mesothelin.

Conclusions

Our study shows that SRM assay technology enables the direct clinical evaluation of protein-derived candidate biomarker panels for which clinically reliable ELISA’s currently do not exist.  相似文献   

3.
Large-scale proteomics applications using SRM analysis on triple quadrupole mass spectrometers present new challenges to LC-MS/MS experimental design. Despite the automation of building large-scale LC-SRM methods, the increased numbers of targeted peptides can compromise the balance between sensitivity and selectivity. To facilitate large target numbers, time-scheduled SRM transition acquisition is performed. Previously published results have demonstrated incorporation of a well-characterized set of synthetic peptides enabled chromatographic characterization of the elution profile for most endogenous peptides. We have extended this application of peptide trainer kits to not only build SRM methods but to facilitate real-time elution profile characterization that enables automated adjustment of the scheduled detection windows. Incorporation of dynamic retention time adjustments better facilitate targeted assays lasting several days without the need for constant supervision. This paper provides an overview of how the dynamic retention correction approach identifies and corrects for commonly observed LC variations. This adjustment dramatically improves robustness in targeted discovery experiments as well as routine quantification experiments.  相似文献   

4.
Shi T  Su D  Liu T  Tang K  Camp DG  Qian WJ  Smith RD 《Proteomics》2012,12(8):1074-1092
Selected reaction monitoring (SRM) - also known as multiple reaction monitoring (MRM) - has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for, e.g. detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein, we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications, as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low- to sub-ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.  相似文献   

5.
Selected or multiple reaction monitoring is a targeted mass spectrometry method (S/MRM-MS), in which many peptides are simultaneously and consistently analyzed during a single liquid chromatography-mass spectrometry (LC-S/MRM-MS) measurement. These capabilities make S/MRM-MS an attractive method to monitor a consistent set of proteins over various experimental conditions. To increase throughput for S/MRM-MS it is advantageous to use scheduled methods and unfractionated protein extracts. Here, we established the practically measurable dynamic range of proteins reliably detectable and quantifiable in an unfractionated protein extract from a human cell line using LC-S/MRM-MS. Initially, we analyzed S/MRM transition peak groups in terms of interfering signals and compared S/MRM transition peak groups to MS1-triggered MS2 spectra using dot-product analysis. Finally, using unfractionated protein extract from human cell lysate, we quantified the upper boundary of copies per cell to be 35 million copies per cell, while 7500 copies per cell represents a lower boundary using a single 35 min linear gradient LC-S/MRM-MS measurement on a current, standard commercial instrument.  相似文献   

6.
Due to the enormous complexity of proteomes which constitute the entirety of protein species expressed by a certain cell or tissue, proteome-wide studies performed in discovery mode are still limited in their ability to reproducibly identify and quantify all proteins present in complex biological samples. Therefore, the targeted analysis of informative subsets of the proteome has been beneficial to generate reproducible data sets across multiple samples. Here we review the repertoire of antibody- and mass spectrometry (MS) -based analytical tools which is currently available for the directed analysis of predefined sets of proteins. The topics of emphasis for this review are Selected Reaction Monitoring (SRM) mass spectrometry, emerging tools to control error rates in targeted proteomic experiments, and some representative examples of applications. The ability to cost- and time-efficiently generate specific and quantitative assays for large numbers of proteins and posttranslational modifications has the potential to greatly expand the range of targeted proteomic coverage in biological studies. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

7.
The intentional use by terrorists of biological toxins as weapons has been of great concern for many years. Among the numerous toxins produced by plants, animals, algae, fungi, and bacteria, ricin is one of the most scrutinized by the media because it has already been used in biocrimes and acts of bioterrorism. Improving the analytical toolbox of national authorities to monitor these potential bioweapons all at once is of the utmost interest. MS/MS allows their absolute quantitation and exhibits advantageous sensitivity, discriminative power, multiplexing possibilities, and speed. In this issue of Proteomics, Gilquin et al. (Proteomics 2017, 17, 1600357) present a robust multiplex assay to quantify a set of eight toxins in the presence of a complex food matrix. This MS/MS reference method is based on scheduled SRM and high‐quality standards consisting of isotopically labeled versions of these toxins. Their results demonstrate robust reliability based on rather loose scheduling of SRM transitions and good sensitivity for the eight toxins, lower than their oral median lethal doses. In the face of an increased threat from terrorism, relevant reference assays based on advanced proteomics and high‐quality companion toxin standards are reliable and firm answers.  相似文献   

8.
Head and neck cancers, including oral squamous cell carcinoma (OSCC), are the sixth most common malignancy in the world and are characterized by poor prognosis and a low survival rate. Saliva is oral fluid with intimate contact with OSCC. Besides non‐invasive, simple, and rapid to collect, saliva is a potential source of biomarkers. In this study, we build an SRM assay that targets fourteen OSCC candidate biomarker proteins, which were evaluated in a set of clinically‐derived saliva samples. Using Skyline software package, we demonstrated a statistically significant higher abundance of the C1R, LCN2, SLPI, FAM49B, TAGLN2, CFB, C3, C4B, LRG1, SERPINA1 candidate biomarkers in the saliva of OSCC patients. Furthermore, our study also demonstrated that CFB, C3, C4B, SERPINA1 and LRG1 are associated with the risk of developing OSCC. Overall, this study successfully used targeted proteomics to measure in saliva a panel of biomarker candidates for OSCC.  相似文献   

9.
Selected reaction monitoring (SRM) is an accurate quantitative technique, typically used for small-molecule mass spectrometry (MS). SRM has emerged as an important technique for targeted and hypothesis-driven proteomic research, and is becoming the reference method for protein quantification in complex biological samples. SRM offers high selectivity, a lower limit of detection and improved reproducibility, compared to conventional shot-gun-based tandem MS (LC-MS/MS) methods. Unlike LC-MS/MS, which requires computationally intensive informatic postanalysis, SRM requires preacquisition bioinformatic analysis to determine proteotypic peptides and optimal transitions to uniquely identify and to accurately quantitate proteins of interest. Extensive arrays of bioinformatics software tools, both web-based and stand-alone, have been published to assist researchers to determine optimal peptides and transition sets. The transitions are oftentimes selected based on preferred precursor charge state, peptide molecular weight, hydrophobicity, fragmentation pattern at a given collision energy (CE), and instrumentation chosen. Validation of the selected transitions for each peptide is critical since peptide performance varies depending on the mass spectrometer used. In this review, we provide an overview of open source and commercial bioinformatic tools for analyzing LC-MS data acquired by SRM.  相似文献   

10.
We present a comprehensive workflow for large scale (>1000 transitions/run) label‐free LC‐MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling that improves S/N by twofold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, normalized group area ratio, MLR normalization, weighted regression analysis, and data dissemination through the Yale protein expression database. As a proof of principle we developed a robust 90 min LC‐MRM assay for mouse/rat postsynaptic density fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label‐free and SIS analyses. Overall, our method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC‐MRM assay.  相似文献   

11.
A crucial part of a successful systems biology experiment is an assay that provides reliable, quantitative measurements for each of the components in the system being studied. For proteomics to be a key part of such studies, it must deliver accurate quantification of all the components in the system for each tested perturbation without any gaps in the data. This will require a new approach to proteomics that is based on emerging targeted quantitative mass spectrometry techniques. The PeptideAtlas Project comprises a growing, publicly accessible database of peptides identified in many tandem mass spectrometry proteomics studies and software tools that allow the building of PeptideAtlas, as well as its use by the research community. Here, we describe the PeptideAtlas Project, its contents and components, and show how together they provide a unique platform to select and validate mass spectrometry targets, thereby allowing the next revolution in proteomics.  相似文献   

12.
李恺  宋雷  石文昊  田喜凤 《生物工程学报》2017,33(11):1859-1868
近年来质谱技术的持续进步促进了靶向蛋白质组的发展,在多反应监测(Multiple reaction monitoring,MRM)靶向蛋白质组定量方法的基础上衍生出平行反应监测(Parallel reaction monitoring,PRM)技术。该技术靶向定量灵敏度和通量更高,重现性也更好,但其对于高复杂性样本在定量速度和深度上均存在一定的局限性。改善PRM定量的色谱方法包括:色谱柱的优化,增加色谱柱内径、降低柱长;色谱洗脱条件的优化,提高液相洗脱流速、缩短洗脱时间;最终建立了一种简单高效的双反相色谱串联PRM靶向蛋白质组定量平台。该平台使用150μm内径和8 cm长的短色谱柱,在800 nL/min的高流速下和35 min有效洗脱梯度内,可实现对293T全细胞裂解液蛋白样本中多达400条低丰度肽段的快速定量。该研究优化了PRM靶向定量方法,将有利于PRM技术的推广,尤其为低丰度蛋白的精准定量提供了一种技术选择。  相似文献   

13.
Transformation of engineered Escherichia coli into a robust microbial factory is contingent on precise control of metabolism. Yet, the throughput of omics technologies used to characterize cell components has lagged far behind our ability to engineer novel strains. To expand the utility of quantitative proteomics for metabolic engineering, we validated and optimized targeted proteomics methods for over 400 proteins from more than 20 major pathways in E. coli metabolism. Complementing these methods, we constructed a series of synthetic genes to produce concatenated peptides (QconCAT) for absolute quantification of the proteins and made them available through the Addgene plasmid repository (www.addgene.org). To facilitate high sample throughput, we developed a fast, analytical-flow chromatography method using a 5.5-min gradient (10 min total run time). Overall this toolkit provides an invaluable resource for metabolic engineering by increasing sample throughput, minimizing development time and providing peptide standards for absolute quantification of E. coli proteins.  相似文献   

14.
The majority of eukaryotic proteins are phosphorylated in vivo, and phosphorylation may be the most common regulatory posttranslational modification. Many proteins are phosphorylated at numerous sites, often by multiple kinases, which may have different functional consequences. Understanding biological functions of phosphorylation events requires methods to detect and quantify individual sites within a substrate. Here we outline a general strategy that addresses this need and relies on the high sensitivity and specificity of selected reaction monitoring (SRM) mass spectrometry, making it potentially useful for studying in vivo phosphorylation without the need to isolate target proteins. Our approach uses label-free quantification for simplicity and general applicability, although it is equally compatible with stable isotope quantification methods. We demonstrate that label-free SRM-based quantification is comparable to conventional assays for measuring the kinetics of phosphatase and kinase reactions in vitro. We also demonstrate the capability of this method to simultaneously measure relative rates of phosphorylation and dephosphorylation of substrate mixtures, including individual sites on intact protein substrates in the context of a whole cell extract. This strategy should be particularly useful for characterizing the physiological substrate specificity of kinases and phosphatases and can be applied to studies of other protein modifications as well.  相似文献   

15.
Osteoarthritis (OA) is considered the most prevalent form of arthritis. The aim of this study was to verify potential protein OA biomarkers by applying Selected Reaction Monitoring (SRM) assays to protein extracts obtained from Bone Marrow-Mesenchymal Stem Cells (BM-MSCs) isolated from OA patients.BM aspirates were obtained from the femoral channel of OA patients at the time of surgery and from the femoral channel of hip fracture subjects without OA during hip joint replacement surgery for the treatment of subcapital fracture.SRM results verified the differential expression of several protein biomarkers in BM-MSCs from OA patients.  相似文献   

16.
Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.  相似文献   

17.
Centrioles are essential for the formation of centrosomes and cilia. While numerical and/or structural centrosomes aberrations are implicated in cancer, mutations in centriolar and centrosomal proteins are genetically linked to ciliopathies, microcephaly, and dwarfism. The evolutionarily conserved mechanisms underlying centrosome biogenesis are centered on a set of key proteins, including Plk4, Sas‐6, and STIL, whose exact levels are critical to ensure accurate reproduction of centrioles during cell cycle progression. However, neither the intracellular levels of centrosomal proteins nor their stoichiometry within centrosomes is presently known. Here, we have used two complementary approaches, targeted proteomics and EGFP‐tagging of centrosomal proteins at endogenous loci, to measure protein abundance in cultured human cells and purified centrosomes. Our results provide a first assessment of the absolute and relative amounts of major components of the human centrosome. Specifically, they predict that human centriolar cartwheels comprise up to 16 stacked hubs and 1 molecule of STIL for every dimer of Sas‐6. This type of quantitative information will help guide future studies of the molecular basis of centrosome assembly and function.  相似文献   

18.
Qin S  Zhou Y  Lok AS  Tsodikov A  Yan X  Gray L  Yuan M  Moritz RL  Galas D  Omenn GS  Hood L 《Proteomics》2012,12(8):1244-1252
The current gold standard for diagnosis of hepatic fibrosis and cirrhosis is the traditional invasive liver biopsy. It is desirable to assess hepatic fibrosis with noninvasive means. Targeted proteomic techniques allow an unbiased assessment of proteins and might be useful to identify proteins related to hepatic fibrosis. We utilized selected reaction monitoring (SRM) targeted proteomics combined with an organ-specific blood protein strategy to identify and quantify 38 liver-specific proteins. A combination of protein C and retinol-binding protein 4 in serum gave promising preliminary results as candidate biomarkers to distinguish patients at different stages of hepatic fibrosis due to chronic infection with hepatitis C virus (HCV). Also, alpha-1-B glycoprotein, complement factor H and insulin-like growth factor binding protein acid labile subunit performed well in distinguishing patients from healthy controls.  相似文献   

19.
20.
Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently‐used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower‐abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox ( http://suba.live ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号