首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We performed a quantitative trait locus (QTL) analysis to map QTLs controlling shank length, body weight, and carcass weight in a resource family of 245 F(2) birds developed from a cross of the large-sized, native, Japanese cockfighting breed, Oh-Shamo (Japanese Large Game), and the White Leghorn breed of chickens. Interval mapping revealed three significant QTLs for shank length on chromosomes 1, 4 and 24 at the experiment-wise 5% level, and a suggestive shank length QTL on chromosome 27 at the experiment-wise 10% level. For body weight two QTLs, one significant and the other suggestive, were identified on chromosomes 4 and 24, respectively. As expected, QTLs for carcass weight, which was highly correlated with body weight (r = 0.95), were detected at the same chromosomal locations as the detected body weight QTLs. Interestingly, the chromosomal locations containing these body weight and carcass weight QTLs coincided with those of two of the four shank length QTLs detected. No QTL with an epistatic interaction effect was discovered for any trait. The total contribution of all detected QTLs to genetic variance was 98.4%, 27.0% and 25.9% for shank length, body weight and carcass weight, respectively, indicating that most shank length QTLs have been identified but many body weight and carcass weight QTLs have been overlooked by the present analysis because of a low coverage rate of the 88 microsatellite markers used here (approximately 46% of the whole genome).  相似文献   

2.
Quantitative trait loci affecting fatness in the chicken   总被引:13,自引:0,他引:13  
An F2 chicken population of 442 individuals from 30 families, obtained by crossing a broiler line with a layer line, was used for detecting and mapping Quantitative Trait Loci (QTL) affecting abdominal fat weight, skin fat weight and fat distribution. Within-family regression analyses using 102 microsatellite markers in 27 linkage groups were carried out with genome-wide significance thresholds. The QTL for abdominal fat weight were found on chromosomes 3, 7, 15 and 28; abdominal fat weight adjusted for carcass weight on chromosomes 1, 5, 7 and 28; skin and subcutaneous fat on chromosomes 3, 7 and 13; skin fat weight adjusted for carcass weight on chromosomes 3 and 28; and skin fat weight adjusted for abdominal fat weight on chromosomes 5, 7 and 15. Interactions of the QTL with sex or family were unimportant and, for each trait, there was no evidence for imprinting or of multiple QTL on any chromosome. Significant dominance effects were obtained for all but one of the significant locations for QTL affecting the weight of abdominal fat, none for skin fat and one of the three QTL affecting fat distribution. The magnitude of each QTL ranged from 3.0 to 5.2% of the residual phenotypic variation or 0.2-0.8 phenotypic standard deviations. The largest additive QTL (on chromosome 7) accounted for more than 20% of the mean weight of abdominal fat. Significant positive and negative QTL were identified from both lines.  相似文献   

3.
Two growth-selected lines in chickens have been developed from a single founder population by divergent selection for body weight at 56 days of age. After more than 40 generations of selection they show a nine-fold difference in body weight at selection age and large differences in growth rate, appetite, fat deposition and metabolic characteristics. We have generated a large intercross between these lines comprising more than 800 F2 birds. QTL mapping revealed 13 loci affecting growth. The most striking observation was that the allele in the high weight line in all cases was associated with enhanced growth, but each locus explained only a small proportion of the phenotypic variance using a standard QTL model (1.3-3.1%). This result is in sharp contrast to our previous study where we reported that the two-fold difference in adult body size between the red junglefowl and White Leghorn domestic chickens is explained by a small number of QTLs with large additive effects. Furthermore, no QTLs for anorexia or antibody response were detected despite large differences for these traits between the founder lines. The result is an excellent example where a large phenotypic difference between populations occurs in the apparent absence of any single locus with large phenotypic effects. The study underscores the need for powerful experimental designs in genetic studies of multifactorial traits. No QTL at all would have reached genome-wide significance using a less powerful design (e.g. approx. 200 F2 individuals) regardless of the nine-fold phenotypic difference between the founder lines for the selected trait.  相似文献   

4.
For 22 carcass traits, we identified 16 QTLs (based on data for pig resource population no. 214, including 180 F2 hybrids of 3 Yorkshire boars and 8 Meishan sows) and mapped them with the use of 39 microsatellite marker loci on chromosomes 4, 6, 7, 8 and 13. Five QTLs were highly significant (P < or = 0.01 at chromosome level): for skin weight (on chromosome 7 at SW1856 and on chromosome 13 at SW1495), skin percentage (on chromosome 7 between SW2155 and SW1856 and on chromosome 13 between SW1495 and SW520), and ratio of leg and butt to carcass (on chromosome 4 at SW1996). The remaining 11 QTLs were significant (P < or = 0.05 at chromosome level): for backfat thickness at shoulder, loin eye width, loin eye height, fat meat weight, lean meat weight, skin weight, bone weight, skin percentage, fat meat percentage, and ratio of lean meat to fat meat. The proportion of phenotypic variance explained by these QTLs ranged from 0.06% (QTL for loin eye width on chromosome 8 between SW1037 and SW1953) to 18.04% (QTL for ratio of lean meat to fat meat on chromosome 7 between SW252 and SW581). Seven of the QTLs reported here are novel.  相似文献   

5.
In an intercross between the high-body-weight-selected mouse line NMRI8 and the inbred line DBA/2, we analyzed genetic effects on growth during the suckling period and after weaning during the juvenile phase of development. QTL mapping results indicated that a switch of gene activation might occur at the age of three weeks when animals are weaned. We found QTLs for body weight with major effects at the age of two and three weeks when animals are fed by their mothers, and QTLs with highest effects after weaning when animals have to live on their own under ad libitum access to food. Specific epistatic effects on body weight at two and three weeks and epistatic interaction influencing growth after weaning support this finding. QTL effects explained the greatest variance during puberty when animals grow fastest and become fertile. In the present study, all except one QTL effect for early body weight had dominance variance components. These might result from direct single-locus-dominant allelic expression, but also from the identified epistatic interaction between different QTLs that we have found for body weight at all ages. Beside body weight, body composition traits (muscle weight, reproductive fat weight, weight of inner organs) were analyzed. Sex-dimorphic QTLs were found for body weight and fat deposition. The identified early-growth QTLs could be the target of epigenetic modifications which might influence body weight at later ages.  相似文献   

6.
Quantitative trait loci (QTL) influencing body weight were mapped by linkage analysis in crosses between a high body weight selected line (DU6) and a control line (DUKs). The two mouse lines differ in body weight by 106% and in abdominal fat weight by 100% at 42 days. They were generated from the same base population and maintained as outbred colonies. Determination of line-specific allele frequencies at microsatellite markers spanning the genome indicated significant changes between the lines on 15 autosomes and the X chromosome. To confirm these effects, a QTL analysis was performed using structured F2 pedigrees derived from crosses of a single male from DU6 with a female from DUKs. QTL significant at the genome-wide level were mapped for body weight on chromosome 11; for abdominal fat weight on chromosomes 4, 11, and 13; for abdominal fat percentage on chromosomes 3 and 4; and for the weights of liver on chromosomes 4 and 11, of kidney on chromosomes 2 and 9, and of spleen on chromosome 11. The strong effect on body weight of the QTL on chromosome 11 was confirmed in three independent pedigrees. The effect was additive and independent of sex, accounting for 21-35% of the phenotypic variance of body weight within the corresponding F2 populations. The test for multiple QTL on chromosome 11 with combined data from all pedigrees indicated the segregation of two loci separated by 36 cM influencing body weight.  相似文献   

7.
Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines.  相似文献   

8.
Bone fractures at the end of lay are a significant problem in egg-laying strains of hens. The objective of the current study was to identify quantitative trait loci (QTL) associated with bone mineralization and strength in a chicken resource population. Layer (White Leghorn hens) and broiler (Cobb-Cobb roosters) lines were crossed to generate an F2 population of 508 hens over seven hatches, and 26 traits related to bone integrity, including bone mineral density (BMD) and content (BMC), were measured. Genotypes of 120 microsatellite markers on 28 autosomal groups were determined, and interval mapping was conducted to identify QTL regions. Twenty-three tests representing three chromosomal regions (chromosomes 4, 10 and 27) contained significant QTL that surpassed the 5% genome-wise threshold, and 47 tests representing 15 chromosomes identified suggestive QTL that surpassed the 5% chromosome-wise threshold. Although no significant QTL influencing BMD and BMC were detected after adjusting for variation in body weight and egg production, multiple suggestive QTL were found. These results support previous experiments demonstrating an important genetic regulation of bone strength in chickens, but suggest the regulation may be due to the effects of multiple genes that each account for relatively small amounts of variation in bone strength.  相似文献   

9.
Phenotypic measurements of chicken egg character and production traits are restricted to mature females only. Marker assisted selection of immature chickens using quantitative trait loci (QTL) has the potential to accelerate the genetic improvement of these traits in the chicken population. The QTL for 12 traits (i.e. body weight (BW), six for egg character, three for egg shell colour and two for egg production) of chickens were identified. An F2 population comprising 265 female chickens obtained by crossing White Leghorn and Rhode Island Red breeds and genotyped for 123 microsatellite markers was used for detecting QTL. Ninety-six markers were mapped on 25 autosomal linkage groups, and 13 markers were mapped on one Z chromosomal linkage group. Eight previous unmapped markers were assigned to their respective chromosomes in this study. Significant QTL were detected for BW on chromosomes 4 and 27, egg weight on chromosome 4, the short length of egg on chromosome 4, and redness of egg shell colour (using the L*a*b* colour system) on chromosome 11. A significant QTL on the Z chromosome was linked with age at first egg. Significant QTL could account for 6-19% of the phenotypic variance in the F2 population.  相似文献   

10.
With the objective of mapping quantitative trait loci (QTLs) for performance and carcass traits, an F2 chicken population was developed by crossing broiler and layer lines. A total of 2063 F2 chicks in 21 full-sib families were reared as broilers and slaughtered at 42 days of age. Seventeen performance and carcass traits were measured. Parental F(0) and F1 individuals were genotyped with 80 microsatellites from chicken chromosome 1 to select informative markers. Thirty-three informative markers were used for selective genotyping of F2 individuals with extreme phenotypes for body weight at 42 days of age (BW42). Based on the regions identified by selective genotyping, seven full-sib families (649 F2 chicks) were genotyped with 26 markers. Quantitative trait loci affecting body weight, feed intake, carcass weight, drums and thighs weight and abdominal fat weight were mapped to regions already identified in other populations. Quantitative trait loci for weights of gizzard, liver, lungs, heart and feet, as well as length of intestine, not previously described in the literature were mapped on chromosome 1. This F2 population can be used to identify novel QTLs and constitutes a new resource for studies of genes related to growth and carcass traits in poultry.  相似文献   

11.
小麦幼苗耐热性的QTL定位分析   总被引:7,自引:0,他引:7  
以小麦DH群体(‘旱选10号’ב鲁麦14’)为材料,在高温(热胁迫)及常温(对照)两种条件下考察小麦幼苗的根干重、苗干重、幼苗生物量、叶片叶绿素含量、叶绿素荧光参数及其耐热指数,并应用基于混合线性模型的复合区间作图法分析幼苗性状及其耐热指数QTL的数量、染色体分布及表达情况,以及QTL与环境的互作效应。结果显示:(1)亲本‘旱选10号’的耐热性明显优于‘鲁麦14’,且杂交后代的耐热性出现超亲分离。(2)控制幼苗耐热相关性状的QTL位点在染色体2D、6B、3A、4A、5A和7A上分布较多,而控制幼苗性状耐热指数的QTL在染色体6A、6B、3A、2D、5A和7A上分布较多,QTL位点在染色体上的分布有区域化的趋势。(3)控制幼苗性状的单个加性QTL和上位性QTL解释的表型变异分别平均为2.48%和2.65%;而控制耐热指数的单个加性QTL和上位性QTL解释的表型变异分别平均为8.84%和1.98%。(4)在热胁迫和对照条件下共检测到与幼苗性状及其耐热指数有关的加性效应QTL 13个和上位性效应QTL 28对,分布在除4D和6D以外的19条染色体上。研究表明,控制幼苗性状的QTL以上位性效应为主,而其耐热指数的QTL以加性效应为主。  相似文献   

12.
Identification of quantitative trait loci (QTLs) controlling yield and yield-related traits in rice was performed in the F2 mapping population derived from parental rice genotypes DHMAS and K343. A total of 30 QTLs governing nine different traits were identified using the composite interval mapping (CIM) method. Four QTLs were mapped for number of tillers per plant on chromosomes 1 (2 QTLs), 2 and 3; three QTLs for panicle number per plant on chromosomes 1 (2 QTLs) and 3; four QTLs for plant height on chromosomes 2, 4, 5 and 6; one QTL for spikelet density on chromosome 5; four QTLs for spikelet fertility percentage (SFP) on chromosomes 2, 3 and 5 (2 QTLs); two QTLs for grain length on chromosomes 1 and 8; three QTLs for grain width on chromosomes1, 3 and 8; three QTLs for 1000-grain weight (TGW) on chromosomes 1, 4 and 8 and six QTLs for yield per plant (YPP) on chromosomes 2 (3 QTLs), 4, 6 and 8. Most of the QTLs were detected on chromosome 2, so further studies on chromosome 2 could help unlock some new chapters of QTL for this cross of rice variety. Identified QTLs elucidating high phenotypic variance can be used for marker-assisted selection (MAS) breeding. Further, the exploitation of information regarding molecular markers tightly linked to QTLs governing these traits will facilitate future crop improvement strategies in rice.  相似文献   

13.

Background

Improving digestive efficiency is a major goal in poultry production, to reduce production costs, make possible the use of alternative feedstuffs and decrease the volume of manure produced. Since measuring digestive efficiency is difficult, identifying molecular markers associated with genes controlling this trait would be a valuable tool for selection. Detection of QTL (quantitative trait loci) was undertaken on 820 meat-type chickens in a F2 cross between D- and D+ lines divergently selected on low or high AMEn (apparent metabolizable energy value of diet corrected to 0 nitrogen balance) measured at three weeks in animals fed a low-quality diet. Birds were measured for 13 traits characterizing digestive efficiency (AMEn, coefficients of digestive utilization of starch, lipids, proteins and dry matter (CDUS, CDUL, CDUP, CDUDM)), anatomy of the digestive tract (relative weights of the proventriculus, gizzard and intestine and proventriculus plus gizzard (RPW, RGW, RIW, RPGW), relative length and density of the intestine (RIL, ID), ratio of proventriculus and gizzard to intestine weight (PG/I); and body weight at 23 days of age. Animals were genotyped for 6000 SNPs (single nucleotide polymorphisms) distributed on 28 autosomes, the Z chromosome and one unassigned linkage group.

Results

Nine QTL for digestive efficiency traits, 11 QTL for anatomy-related traits and two QTL for body weight at 23 days of age were detected. On chromosome 20, two significant QTL at the genome level co-localized for CDUS and CDUDM, i.e. two traits that are highly correlated genetically. Moreover, on chromosome 16, chromosome-wide QTL for AMEn, CDUS, CDUDM and CDUP, on chromosomes 23 and 26, chromosome-wide QTL for CDUS, on chromosomes 16 and 26, co-localized QTL for digestive efficiency and the ratio of intestine length to body weight and on chromosome 27 a chromosome-wide QTL for CDUDM were identified.

Conclusions

This study identified several regions of the chicken genome involved in the control of digestive efficiency. Further studies are necessary to identify the underlying genes and to validate these in commercial populations and breeding environments.  相似文献   

14.
The productivity and economic prosperity of sheep farming could benefit greatly from more effective methods of selection for year-round lambing. Identification of QTL for aseasonal reproduction in sheep could lead to more accurate selection and faster genetic improvement. One hundred and twenty microsatellite markers were genotyped on 159 backcross ewes from a Dorset × East Friesian crossbred pedigree. Interval mapping was undertaken to map the QTL underlying several traits describing aseasonal reproduction including the number of oestrous cycles, maximum level of progesterone prior to breeding, pregnancy status determined by progesterone level, pregnancy status determined by ultrasound, lambing status and number of lambs born. Seven chromosomes (1, 3, 12, 17, 19, 20 and 24) were identified to harbour putative QTL for one or more component traits used to describe aseasonal reproduction. Ovine chromosomes 12, 17, 19 and 24 harbour QTL significant at the 5% chromosome-wide level, chromosomes 3 and 20 harbour QTL that exceeded the threshold at the 1% chromosome-wide level, while the QTL identified on chromosome 1 exceeded the 1% experiment-wide significance level. These results are a first step towards understanding the genetic mechanism of this complex trait and show that variation in aseasonal reproduction is associated with multiple chromosomal regions.  相似文献   

15.
Quantitative trait locus (QTL) mapping is frequently used to understand the genetic architecture of quantitative traits. Herein, we performed a genome scan for QTL affecting the morphometric characters in eight full-sib families containing 522 individuals using different statistical methods (Sib-pair and half-sib model). A total of 194 QTLs were detected in 25 different regions on 10 linkage groups (LGs). Among them, 37 QTLs on five LGs (eight, 13, 24, 40 and 45) were significant (5% genome-wide level), while the remaining 40 (1% chromosome-wide level) and 117 (5% chromosome-wide level) indicated suggestive effect on those traits. Heritabilities for most morphometric traits were moderate to high, ranging from 0.21 to 0.66, with generally strong phenotypic and genetic correlations between the traits. A large number of QTLs for morphometric traits were co-located, consistent with their high correlations, and may reflect pleiotropic effect on the same genes. Biological pathways were mapped for possible candidate genes on QTL regions. One significantly enriched pathway was identified on LG45, which had a P-value of 0.04 and corresponded to the “regulation of actin cytoskeleton pathway”. The results are expected to be useful in marker-assisted selection (MAS) and provide valuable information for the study of gene pathway for morphometric and growth traits of the common carp.  相似文献   

16.
An F2 population (695 individuals) was established from broiler chickens divergently selected for either high (HG) or low (LG) growth, and used to localize QTL for developmental changes in body weight (BW), shank length (SL9) and shank diameter (SD9) at 9 weeks. QTL mapping revealed three genome‐wide QTL on chromosomes (GGA) 2, 4 and 26 and three suggestive QTL on GGA 1, 3 and 5. Most of the BW QTL individually explained 2–5% of the phenotypic variance. The BW QTL on GGA2 explained about 7% of BW from 3 to 7 weeks of age, while that on GGA4 explained 15% of BW from 5 to 9 weeks. The BW QTL on GGA2 and GGA4 could be associated with early and late growth respectively. The GGA4 QTL also had the largest effect on SL9 and SD9 and explained 7% and 10% of their phenotypic variances respectively. However, when SL9 and SD9 were corrected with BW9, a shank length percent QTL was identified on GGA2. We identified novel QTL and also confirmed previously identified loci in other chicken populations. As the foundation population was established from commercial broiler strains, it is possible that QTL identified in this study could still be segregating in commercial strains.  相似文献   

17.
Development of testes or ovaries is critical to chicken breeders. Understanding the genetic mechanisms influencing the development of the testes and ovaries could enhance selection efforts which target reproductive traits. The linkage analysis was conducted within an F2 population derived from Beijing-You chickens and a commercial broiler line. The results have identified one quantitative trait loci (QTL, designated T1) for bilateral testicular weight (TW) and the percentage of TW to carcass weight, and five QTLs (designated O1–O5) for ovary weight (follicle-free, OW) and the percentage of OW to carcass weight. For the testes traits, QTL T1 is located between 6.55 and 8.56 Mb on GGA13. Especially, the gene gamma-amino butyric acid A receptor, alpha 1 (GABRA1) located near the T1 peak. For ovarian traits, QTL O2 was located at 29.31 Mb on GGA7. G protein-coupled receptor 39 (GPR39) present at the O2 peak was expressed at higher levels within the reproductive tract. It is also involved in the regulation of several reproductive functions. Other QTL peaks and the genes’ function in the ovary and testes need to be evaluated. The QTLs and the genes identified in this study could provide valuable information for establishing reproductive traits in chickens, and need further investigation.  相似文献   

18.
陆地棉产量性状QTLs的分子标记及定位   总被引:34,自引:0,他引:34  
用我国的高产栽培品种泗棉3号和美国栽培品种TM-1为材料,构建F2和F2∶3作图群体,应用301对SSR引物和1040个RAPD引物,对产量性状QTLs进行了分子标记筛选,结果共筛选出了37对SSR多态性引物和10个RAPD多态性引物的49个位点,鉴定出了控制产量性状变异的主效QTLs。定位于第9染色体的连锁群,分别具有控制铃重、衣分和籽指的主效QTLs,铃重的2个QTLs分别解释F2∶3群体表型变异的18.2%和21.0%;在F2群体检测到的1个衣分QTL解释表型变异的25%,另一个衣分QTL在F2群体和F2∶3群体都检测到,解释F2群体衣分的24.9%的表型变异,解释F2∶3群体衣分的5.9%的表型变异;在F2∶3群体铃重的一个QTL的同一位置同时检测到一个籽指QTL,它解释15.6%的表型变异,是一因多效或是紧密连锁的两个QTLs,有待进一步研究。本研究标记的产量性状主效QTLs可用于棉花产量性状的标记辅助选择。  相似文献   

19.
An F2 chicken population was established from a crossbreeding between a Xinghua line and a White Recessive Rock line. A total of 502 F2 chickens in 17 full-sib families from six hatches was obtained, and phenotypic data of 488 individuals were available for analysis. A total of 46 SNP on GGA1 was initially selected based on the average physical distance using the dbSNP database of NCBI. After the polymorphism levels in all F0 individuals (26 individuals) and part of the F1 individuals (22 individuals) were verified, 30 informative SNP were potentially available to genotype all F2 individuals. The linkage map was constructed using Cri-Map. Interval mapping QTL analyses were carried out. QTL for body weight (BW) of 35 d and 42 d, 49 d and 70 d were identified on GGA1 at 351–353 cM and 360 cM, respectively. QTL for abdominal fat weight was on GGA1 at 205 cM, and for abdominal fat rate at 221 cM. Two novel QTL for fat thickness under skin and fat width were detected at 265 cM and 72 cM, respectively.  相似文献   

20.
A previous genetic map containing 117 microsatellite loci and 400 F(2) plants was used for quantitative trait loci (QTL) mapping in tropical maize. QTL were characterized in a population of 400 F(2:3) lines, derived from selfing the F(2) plants, and were evaluated with two replications in five environments. QTL determinations were made from the mean of these five environments. Grain yield (GY), plant height (PH), ear height (EH) and grain moisture (GM) were measured. Variance components for genotypes (G), environments (E) and GxE interaction were highly significant for all traits. Heritability was 0.69 for GY, 0.66 for PH, 0.67 for EH and 0.23 for GM. Using composite interval mapping (CIM), a total of 13 distinct QTLs were identified: four for GY, four for PH and five for EH. No QTL was detected for GM. The QTL explained 32.73 % of the phenotypic variance of GY, 24.76 % of PH and 20.91 % of EH. The 13 QTLs displayed mostly partial dominance or overdominance gene action and mapped to chromosomes 1, 2, 7, 8 and 9. Most QTL alleles conferring high values for the traits came from line L-14-4B. Mapping analysis identified genomic regions associated with two or more traits in a manner that was consistent with correlation among traits, supporting either pleiotropy or tight linkage among QTL. The low number of QTLs found, can be due to the great variation that exists among tropical environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号