首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digenetic trematodes usually show a high degree of specificity for their molluscan intermediate hosts. A panel of 4 digenean species (Echinostoma paraensei, E. trivolvis, Schistosoma mansoni, and Schistosomatium douthitti) and 5 snail species (Biomphalaria glabrata, Helisoma trivolvis, Lymnaea stagnalis, Stagnicola elodes, and Helix aspersa representing 3 gastropod families) was used to assess the relative contributions of miracidial behavior, host plasma osmolality, and host plasma factors in dictating specificity. Additional experiments were undertaken with a fifth digenean, Echinoparyphium sp. Expected patterns of compatibility were first confirmed; each parasite species produced patent infections in its known snail host, but not in the other snail species. One exception was S. douthitti, which unexpectedly did not infect L. stagnalis. As judged by direct observation and by noting their disappearance after exposure to snails, miracidia were generally less likely to attach to or penetrate incompatible than compatible hosts. However, over half of the miracidia of each parasite species attached to or attempted penetration of both compatible and incompatible hosts, suggesting that under the experimental conditions used, miracidial host location and attachment behaviors were not of overriding importance in dictating observed patterns of specificity. For each digenean species, the percentage of larvae that became immobile, rounded, showed tegumental damage, or died over a 6-hr interval in plasma of the various snails was assessed. In no case was plasma from a compatible host harmful to sporocysts or rediae. In contrast, in 8 of 16 (50%) incompatible combinations, snail plasma had a significant negative effect on sporocyst condition. In 4 of 12 (33%) incompatible combinations, plasma had a significant negative effect on rediae. In 9 of 10 combinations tested, lymnaeid plasma was toxic for the parasites of planorbid snails and in 2 of 4 combinations, planorbid plasma was toxic for the parasites of lymnaeid snails. Toxicity was not attributable to differences in plasma osmolality between snail species. The ability of plasma from incompatible snails to affect viability of both sporocysts and rediae was surprisingly strong, suggesting that humoral factors play a greater role in dictating patterns of digenean-snail specificity than previously appreciated.  相似文献   

2.
Schistosome parasites commonly show specificity to their intermediate mollusc hosts and the degree of specificity can vary between parasite strains and geographical location. Here the role of miracidial behaviour in host specificity of Schistosoma haematobium on the islands of Zanzibar is investigated. In choice-chamber experiments, S. haematobium miracidia moved towards Bulinus globosus snail hosts in preference to empty chambers. In addition, miracidia preferred uninfected over patent B. globosus. This preference should benefit the parasite as patent snails are likely to have mounted an immune response to S. haematobium as well as providing poorer resources than uninfected snails. Miracidia also discriminated between the host B. globosus and the sympatric, non-host species Cleopatra ferruginea. In contrast, S. haematobium did not discriminate against the allopatric Bulinus nasutus. Penetration of the host by miracidia was investigated by screening snails 24 h after exposure using polymerase chain reaction (PCR) with S. haematobium specific DraI repeat primers. There was no difference in the frequency of penetration of B. globosus versus B. nasutus. These responses to different snail species may reflect selection pressure to avoid sympatric non-hosts which represent a transmission dead end. The distribution of B. nasutus on Unguja is outside the endemic zone and so there is less chance of exposure to S. haematobium, hence there will be little selection pressure to avoid this non-host snail.  相似文献   

3.
The development of Fasciola hepatica from two species of definitive hosts, i.e. cattle (Bos taurus) and a marmoset (Callithrix penicillata) in the snail Lymnaea columella was determined based on the production of rediae and cercariae and snail survival rate. More rediae and cercariae at 60-74 days post-infection were produced by snails infected by cattle-derived miracidia (cattle group) than by those infected by marmoset-derived miracidia (marmoset group). Among the L. columella parasitized by the marmoset group, the survival rate and the percentage of positive snails were higher than among those parasitized by the cattle group. Eggs of F. hepatica released in cattle faeces were significantly bigger than those released in marmoset faeces. Miracidia originating from parasites that completed their development in cattle were more efficient in infecting the intermediate host. These results suggest that vertebrate-host origin influences the eggs produced by the parasite and the infection rates in the snail host L. columella.  相似文献   

4.
The resistance of Biomphalaria glabrata snails that have been sensitized by various levels of irradiated or nonirradiated Echinostoma lindoense miracidia increased after a second challenge infection with nonirradiated miracidia of the same species. This was demonstrated by increased suppression of migrating capacity of invading sporocysts, an accelerated host tissue reaction, and a greater tendency of snail amebocytes to flatten while attacking the parasite. Three methods of elimination of invading sporocysts were observed: (1) encapsulation by amebocytes followed by destruction of the sporocysts; (2) expulsion of the sporocyst through the host epithelium after its encapsulation in the subepithelial tissues; (3) blockade of the parasite's entry into subepithelial tissues by a localized amebocyte aggregation. The basic mechanism of host snail response to a single or a repeated challenge infection appears to be similar, though an anamnestic reaction is evident in the accelerated response following a second challenge exposure.  相似文献   

5.
Surface glycoproteins from newly transformed schistosomula of Schistosoma mansoni have been identified by surface radioiodination and lectin-affinity chromatography. From the glycoconjugates bound by the three lectins used, concanavalin A, peanut agglutinin and fucose-binding protein, only in the concanavalin-A-bound fractions were glycoproteins identified. Changes in concanavalin-A-binding glycoproteins were detected after transformation and early maturation of the schistosomula. Some glycoproteins disappeared (Mr 38 000, 29 000 and 25 000), some appeared independently of host molecules (Mr 19 000), others only appeared after culture in human serum (Mr 45 000). Two major glycoproteins of Mr 32 000 and 16 000 were detected on all stages examined. Within the total set of surface glycoproteins identified on 3-h schistosomula only the strong Mr-38 000-32 000 complex was found to be antigenic. Thus many major low-molecular-mass surface glycoproteins of the parasite are not recognised as antigens by immune animals. The separation of only the Mr-38 000-32 000 antigens by concanavalin A affinity chromatography indicates the feasibility of using this method in conjunction with immunoaffinity columns to purity these molecules.  相似文献   

6.
Miracidia of Schistosoma mansoni penetrate into many kinds of snails, but development of normal sporocysts takes place only in certain species of Biomphalaria. Different populations of this snail vary greatly in laboratory infection rates with S. mansoni originating from diverse geographic localities. Cross-exposure experiments show that compatibility factors exist in both snails and parasites. Susceptibility of stocks of Biomphalaria to particular strains of S. mansoni is genetically determined and may be modified by selection in the laboratory. In a compatible snail, the sporocyst develops without host tissue reaction; in incompatible snails the early larvae are rapidly surrounded by amebocytes and fibroblasts, and destroyed. This reaction resembles the generalized host cellular response elicited by any foreign body. An individual snail exposed to many miracidia may have both developing and encapsulated sporocysts side by side within its tissues. The weight of current evidence suggests that elicitation or absence of this cellular response resides in the recognition or nonrecognition of the sporocyst as a foreign body. The sporocyst tegument surface, which forms within a few hours after miracidial penetration, may have a molecular conformation identical with that of the snail, or may be able to bind specific host molecules, so that detection and subsequent encapsulation by host cells are averted. Presuming genetic determination of the sporocyst surface structure and of the host cell detection capability, differing infection rates would result from the particular frequencies of relevant genes in the populations concerned.  相似文献   

7.
Three freshwater snail species of the family Lymnaeidae have been reported from Korea, Radix auricularia coreana, Austropeplea ollula and Fossaria truncatula. Out of 3 lymnaeid snail species, A. ollula was naturally infected with the Echinostoma cinetorchis cercariae (infection rate = 0.7%). In the experiments with the laboratory-bred snails, F. truncatula as well as A. ollula was also susceptible to the E. cinetorchis miracidia with infection rates of 25% and 40%, respectively. All of three lymnaeid snail species exposed to the E. cinetorchis cercariae were infected with the E. cinetorchis metacercariae. It is evident that A. ollula acts as the first molluscan intermediate host of E. cinetorchis in Korea, and F. truncatula may be a possible candidate for the first intermediate host of this intestinal fluke. Also, three lymnaeid snail species targeted were experimentally infected with E. cinetorchis metacercariae.  相似文献   

8.
A fundamental goal of parasite evolutionary ecology is to elucidate patterns of host use and determine the underlying mechanisms of parasite colonisation. In order to distinguish the relative contributions of host encounter rates and host compatibility to infection outcomes, we compared host use in both field and experimental laboratory settings. Two years of bi-weekly snail sampling at a freshwater pond demonstrated fluctuating availability among three potential second intermediate snail host species and suggested that two trematode species (Echinostoma revolutum and Echinoparyphium sp.) did not colonise the three potential snail host species, Lymnaea elodes, Physa gyrina and Helisoma trivolvis, differentially. However, a series of experimental infections demonstrated that both parasites colonised H. trivolvis more so than the other two host species. Thus, more echinostome parasites utilised snail hosts that cannot serve as their first intermediate host. In experimental infections, host size and vagility were not strong determinants of infection. By utilising field and laboratory approaches, we were able to compare the strength of host compatibility under controlled conditions with patterns of infection in nature. Based on the results from these studies, it appears that host encounter is the primary mechanism dictating infection outcomes in the field.  相似文献   

9.
Hertel J  Holweg A  Haberl B  Kalbe M  Haas W 《Oecologia》2006,147(1):173-180
Chemical communication among freshwater organisms is an adaptation to improve their coexistence. Here,we focus on the chemical cues secreted by the freshwater gastropod Lymnaea stagnalis, which are known to stimulate behavioural responses of Trichobilharzia ocellata (Plathelminthes, Digenea, Trematoda) miracidia. Such responses are commonly claimed to influence transmission positively, but in response to chemical cues miracidia randomly change their swimming direction. This kind of response does not necessarily increase transmission, because miracidia may be trapped at the periphery of very large snail odour-clouds, which may prevent them from approaching the snail. On the other hand, the odour clouds may be too small to improve host-localisation. To shed light on these scenarios, the spreading of molecules released around L. stagnalis (active space) was visualised by recording host-finding responses of T. ocellata miracidia when they approached snails. Behavioural responses of miracidia indicated the spreading of compounds forming an attractive active space only around the host-snail L. stagnalis, but not around sympatric non-host-snail species. The active space increased approximately linearly with the time the snail rested at the same spot and within 5 min it reached a volume of more than 30 times that of the snail. We also demonstrated in a large-scale experiment, that the active space of L. stagnalis significantly increases the transmission success of T. ocellata miracidia. Additionally, the microhabitat selection of T. ocellata miracidia was studied, demonstrating that peripheral locations near the water surface were preferred, which are also preferred sites of L. stagnalis. Improved chemoperception and microhabitat selection may have been a consequence of coevolution with snails and benefited miracidia, which became efficient transmissive stages. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
Ultraviolet B (UVB, 280-315 nm) radiation is detrimental to both of larvae of the digenetic trematode Schistosoma mansoni and its snail intermediate host, Biomphalaria glabrata. We explored effects of UVB on three aspects of the interaction between host and parasite: survival of infected snails, innate susceptibility and resistance of snails to infection, and acquired resistance induced by irradiated miracidia. Snails infected for 1 week showed significantly lower survival than uninfected snails following irradiation with a range of UVB intensities. In contrast to known immunomodulatory effects in vertebrates, an effect of UVB on susceptibility or resistance of snails to infection could not be conclusively demonstrated. Finally, exposure of susceptible snails to UVB-irradiated miracidia failed to induce resistance to a subsequent challenge with nonirradiated miracidia, a result similar to that reported previously with ionizing radiation.  相似文献   

11.
The amphibious snail Oncomelania nosophora is an intermediate host of Schistosoma japonicum. Previously we reported that there are two strains of the snail, one resistant and one susceptible to a Mindoro, the Philippines, strain of S. japonicum. The resistant snails were collected from Nirasaki and susceptible snails from Kisarazu, Japan. To determine early cellular responses in the two snail strains, we examined histologic alterations in the snails for up to 18 h after the initial exposure to miracidia. In both strains, the penetrating miracidia were distributed in the foot, mantle, gills, heart, stomach, and kidney, and the mean number of penetrating miracidia was similar in both strains. After penetration, snail hemocytes migrated toward the larvae, and by 12 h after exposure, substantial numbers of penetrated larvae were surrounded and encapsulated by hemocytes. The percentage of larvae encapsulated by hemocytes during 12-18 h after the exposure was significantly higher in the resistant Nirasaki strain (60.9+/-19.8%) than in the susceptible Kisarazu strain (42.3+/-15.0%). In a few snails of the Nirasaki strain, all the larvae found were encapsulated by hemocytes. The differences in hemocyte responses between the two strains may explain the susceptibility of the snails to schistosome larvae.  相似文献   

12.
This study addresses the infrapopulation sizes of 2 larval trematode species Himasthla quissetensis and Zoogonus rubellus as they co-occur within their estuarine snail host Ilyanassa obsoleta. Rediae of H. quissetensis and sporocysts of Z rubellus were counted in snails singly infected with each parasite and in snails infected with both. Comparisons of the counts indicate that infrapopulations of H. quissetensis were unaffected by co-occurrence with Z rubellus. However, Z. rubellus infrapopulations were reduced when co-occurring with H. quissetensis. It is proposed that this situation does not result from an interspecific interaction between parasite species. Although this double infection is relatively frequent in certain snail populations, it is contended that these trematode species do not co-occur often enough to evolve responses to one another. However, the host environment must be encountered in each life cycle, and both trematode species must be adapted to use it. On this basis, whatever happens when these 2 species occupy the same host is based on adaptations of the parasites to the host. It is proposed that these parasites are adapted to self-limit their infrapopulations in the snail host. They can, thus, preserve and use the host for many years and thereby enhance total cercarial transmission (fitness). Infrapopulation sizes would be determined by host resource levels, which, among other factors, would be influenced by the presence of multiple parasite species. In single infections, by far the most common situation, host resource levels would be set by the nutritional status or age (size) of the host (or both). The reduced infrapopulation sizes of Z rubellus on co-occurrence suggest that this trematode is more sensitive to host resource levels than is H. quissetensis.  相似文献   

13.
Various populations of laboratory bred bulinid snails were exposed to miracidia of Schistosoma bovis from Mbozi. The parasite is naturally transmitted by Bulinus globosus in the area. Laboratory infection revealed a good relationship with B. forskalii and B. globosus from Mbozi and a population of B. forskalii from Dar es Salaam (infection rates 100%, 63.6% and 41.7% respectively). Populations of B. globosus and B. nasutus from Dar es Salaam were refractory. It appears that both snail species (B. globosus and B. forskalii) present in Mbozi district transmit S. bovis.  相似文献   

14.
The standing crop biomass of different populations or trophic levels reflects patterns of energy flow through an ecosystem. The contribution of parasites to total biomass is often considered negligible; recent evidence suggests otherwise, although it comes from a narrow range of natural systems. Quantifying how local parasite biomass, whether that of a single species or an assemblage of species sharing the same host, varies across localities with host population biomass, is critical to determine what constrains parasite populations. We use an extensive dataset on all free‐living and parasitic metazoan species from multiple sites in New Zealand lakes to measure parasite biomass and test how it covaries with host biomass. In all lakes, trematodes had the highest combined biomass among parasite taxa, ranging from about 0.01 to 0.25 g m?2, surpassing the biomass of minor free‐living taxa. Unlike findings from other studies, the life stage contributing the most to total trematode biomass was the metacercarial stage in the second intermediate host, and not sporocysts or rediae within snail first intermediate hosts, possibly due to low prevalence and small snail sizes. For populations of single parasite species, we found no relationship between host and parasite biomass for either juvenile or adult nematodes. In contrast, all life stages of trematodes had local biomasses that correlated positively with those of their hosts. For assemblages of parasite species sharing the same host, we found strong relationships between local host population biomass and the total biomass of parasites supported. In these host–parasite biomass relationships, the scaling factor (slope in log‐log space) suggests that parasites may not be making full use of available host resources. Host populations appear capable of supporting a little more parasite biomass, and may be open to expansion of existing parasites or invasion by new ones.  相似文献   

15.
Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata   总被引:1,自引:0,他引:1  
Both short-term (3 hr) exposure of Biomphalaria glabrata snails (M-line and 13-16-R1) to Schistosoma mansoni (PR1) miracidia and in vitro incubation of parasite sporocysts with host hemolymph components altered host phagocytic ability. Hemocytes obtained from susceptible (M-line) snails that had been exposed to parasite miracidia for 3 hr showed reduced levels of phagocytosis of yeast cells in vitro compared to hemocytes from unexposed individuals. Incubation of whole hemolymph with sporocysts in vitro also reduced yeast phagocytosis in this susceptible strain. In contrast, resistant (13-16-R1) hemocytes showed increased levels of yeast phagocytosis after in vitro incubation with the parasite, and the opsonic properties of 13-16-R1 plasma were greater after exposure of snails to miracidia. These strain-specific effects of S. mansoni on host hemocyte phagocytosis and plasma opsonization were seen only when both plasma and hemocytes were present at the time of exposure to the parasite.  相似文献   

16.
A partial life cycle involving miracidia hatched from the eggs of Trichobilharzia sp. recovered from New Zealand scaup (Aythya novaeseelandia) to the release of furcocercariae by laboratory snails (Lymnaea tomentosa) was accomplished. Challenges with five and ten miracidia per snail were lethal. Challenge with three miracidia resulted in development to the daughter sporocyst stage and death in five, development to furcocercarial stage and death in one, and shedding of furcocercariae in one of seven snails. Observed lethality of schistosome miracidia to L. tomentosa may explain the low infection prevalence observed in the wild. Future work should plan challenge exposures of three or fewer miracidia to ensure snail survival and successful recovery of furcocercariae. The Trichobilharzia sp. found in the New Zealand scaup does not key morphologically to the literature. It may be a new species and further work is needed.  相似文献   

17.
Schistosoma mansoni was isolated by hatching eggs obtained from a naturally infected Rat in Grand Etang, Guadeloupe; fifty Biomphalaria glabrata were exposed to five miracidia each. The resulting cercariae were used to infect laboratory mice which were later sacrificed to provide worms for enzyme analyses and eggs for further infections. Seven enzymes in extracts of individual worms were examined by isoelectric focusing in polyacrylamide gels: AcP, G6PDH, PGM, GPI and HK showed no variation, whereas MDH and LDH proved to be polymorphic. Two MDH loci were recognised, MDH-2 was invariant whereas two alleles were assumed at the MDH-1 locus. It was not possible to make a genetic interpretation of the complex banding pattern of LDH, although 4 types (LDH-A, -B, -C, -D) were observed. Of the snail infections, one batch of snails was exposed to 5 miracidia per snail in the normal way whereas other snails were each exposed to a single miracidium. The latter were sacrificed to provide sporocysts to transplant into further groups of recipient snails. Cercariae from the recipient snails were used to infect mice and the adult worms were analysed and compared with the normally passaged material. In this way, three lines, defined by the possession of particular MDH and LDH types, were selected from the originally polymorphic population; two were identical. The combination of single miracidium infections and enzyme typing has illustrated the possibility of selecting parasite lines of known genotype; transplantation of sporocysts from snail to snail has demonstrated that such lines can be maintained exclusively in the intermediate host.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Schistosoma mansoni occurs in tropical regions where levels of ultraviolet B (UVB; 290-320 nm) light are elevated. However, the effects of UVB on parasite transmission are unknown. This study examines effects of UVB on the miracidia and sporocysts of S. mansoni, focusing specifically on intramolluscan development, infectivity, and the ability to photoreactivate (repair DNA damage using visible light). Histology revealed that miracidia irradiated with 861 J x m(-2) underwent abnormal development after penetrating Biomphalaria glabrata snails. Total number of sporocysts in snail tissues decreased as a function of time postinfection (PI), among both nonirradiated and irradiated parasites; however, this decrease was greater in the latter. Moreover, whereas the proportion alive of nonirradiated sporocysts increased PI, that of irradiated sporocysts, i.e., derived from irradiated miracidia, decreased. Irradiation of miracidia with UVB resulted in decreased prevalence of patent infection (defined by presence of daughter sporocysts) in a dose-dependent manner, and no infections occurred at a dose of 861 J x m(-2). Like many aquatic organisms, including the snail host, parasites were able to photoreactivate if exposed to visible light following UVB irradiation, even subsequent to penetrating snails. These photoreactivation results suggest cyclobutane-pyrimidine dimers in DNA as the primary mechanism of UVB damage, and implicate photoreactivation, rather than nucleotide excision, as the main repair process in S. mansoni.  相似文献   

20.
The transmission stages of parasites are key determinants of parasite fitness, but they also incur huge mortality. Yet the selective forces shaping the sizes of transmission stages remain poorly understood. We ran a comparative analysis of interspecific variation in the size of transmission stages among 404 species of parasitic trematodes. There are two transmission steps requiring infective stages in the life cycle of trematodes: transmission from the definitive to the first intermediate (snail) host is achieved by eggs and/or the miracidia hatched from those eggs, and transmission from the first to the second intermediate host is achieved by free-swimming cercariae. The sizes of these stages are under strong phylogenetic constraints. Our results show that taxonomy explains >50% of the unaccounted variance in linear mixed models, with most of the variance occurring at the superfamily level. The models also demonstrated that mollusc size is positively associated with egg volume, miracidial volume and cercarial body volume, but not with the relative size of the cercarial tail. In species where they encyst on substrates, cercariae have significantly larger bodies than in species penetrating chordates, although the relative size of the cercarial tail of species using chordates as second intermediate hosts was larger than in other trematode species. Habitat also matters, with larger cercarial tails seen in freshwater trematodes than in marine ones, and larger miracidial volumes in freshwater species than in marine ones. Finally, the latitude (proxy for local temperature) at which the trematode species were collected had no effect on the sizes of transmission stages. We propose that resource availability within the snail host, the probability of contacting a host, and the density and viscosity of the water medium combine to select for different transmission stage sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号