首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spontaneously immortalized human keratinocyte cell line HaCaT is widely used as a human keratinocyte model. In a previous comparative study between normal human keratinocytes (NHKs) and HaCaT, we reported that Ca2+ concentrations greater than 1 mM induced differentiation in vitro in both cell types, notably characterized by increased expression of differentiation markers keratins 1 (K1), 10 (K10) and involucrin. Surprisingly, cells had a higher proliferative activity than those cultured with low Ca2+ levels. These results raised many questions; in particular concerning the emergence of HaCaT cells subpopulation which would have different differentiation states and/or proliferation rates throughout Ca2+-induced differentiation. To isolate these subpopulations, we used sedimentation field-flow fractionation (SdFFF). Results demonstrated that the most differentiated cells (HC-F1), characterized by the highest expression of keratinocyte differentiation markers, had the lowest proliferative activity. In contrast, less differentiated cells (HC-F2) maintained a higher proliferative activity. SdFFF is a tool to sort differentiated and/or proliferating cells from a total pool previously treated with a Ca2+ concentration inducing differentiation, and can be use to prepare biological models necessary for studying HaCaT cell proliferation after Ca2+-induced differentiation treatment.  相似文献   

2.
Extracellular calcium (Ca2+) and store-operated Ca2+ entry (SOCE) govern homoeostasis in the mammalian epidermis. Multiple microRNAs (miRNA) also regulate epidermal differentiation, and raised external Ca2+ modulates the expression of several such miRNAs in keratinocytes. However, little is known about the regulation of miR-184 in keratinocytes or the roles of miR-184 in keratinocyte differentiation. Here we report that exogenous Ca2+ stimulates miR-184 expression in primary epidermal keratinocytes and that this occurs in a SOCE-dependent manner. Levels of miR-184 were raised by about 30-fold after exposure to 1.5 mM Ca2+ for 5 days. In contrast, neither phorbol ester nor 1,25-dihydroxyvitamin D3 had any effect on miR-184 levels. Pharmacologic and genetic inhibitors of SOCE abrogated Ca2+-dependent miR-184 induction by 70% or more. Ectopic miR-184 inhibited keratinocyte proliferation and led to a fourfold increase in the expression of involucrin, a marker of early keratinocyte differentiation. Exogenous miR-184 also triggered a threefold rise in levels of cyclin E and doubled the levels of γH2AX, a marker of DNA double-strand breaks. The p21 cyclin-dependent kinase inhibitor, which supports keratinocyte growth arrest, was also induced by miR-184. Together our findings point to an SOCE:miR-184 pathway that targets a cyclin E/DNA damage regulatory node to facilitate keratinocyte differentiation.  相似文献   

3.
Abstract The expression of differentiation stages in a murine epidermal cell transformation model has been investigated as a basis for studies of chemically-induced differentiation. Antibodies in sera of patients with the autoimmune diseases bullous pemphigoid and pemphigus vulgaris exhibit specific reactivity to antigenic determinants of basal and spinous cells, respectively, in sections of mouse and human epidermis. In addition, spinous cells in epidermis are reactive with a mouse monoclonal antibody to desmoplakin, a desmosomal component immunologically distinct from pemphigus. These antibodies were used to identify and attempt to quantify keratinocyte subpopulations in culture based on differentiation stage. Epidermal cell lines were cultured under conditions which favour proliferation (0.02 to 0.04 mm extracellular Ca2+, i.e. low Ca2+ conditions) or differentiation (0.1 mM to 1.4 mM Ca2+), as previously shown using primary cultures of mouse keratinocytes. Two independently-derived normal keratinocyte lines demonstrated Ca2+-dependent reactivity with pemphigoid and pemphigus antiserum, like that which has been observed in primary cultures. Furthermore, a Ca2+ and time-dependent reactivity with the three antisera was also observed in a papilloma cell line (derived from one of the normal cell lines after treatment in vitro with 7,12-dimethylbenz[α]anthracene). Papilloma cells cultured under conditions of low extracellular Ca2+ were comprised of three subpopulations: cells reactive only with pemphigoid anti-serum, cells reactive with pemphigoid and desmoplakin antibody (intracellular location), and cells reactive only with desmoplakin antibody. However, like the normal cell lines, papilloma cells underwent a transition to predominantly a spinous cell population (i.e. reactive with pemphigus and desmoplakin antibody) in response to extracellular Ca2+. A slower loss of pemphigoid antibody reactivity was noted in papilloma cells, consistent with an abnormal regulation of differentiation. The attempt to characterize these dynamic transitions from basal to spinous cell subpopulations in culture was considered to be prerequisite for the use of the model to investigate differentiation-inducing agents in carcinoma therapy.  相似文献   

4.
The role of intracellular Ca2+ in the regulation of Ca2+-induced terminal differentiation of mouse keratinocytes was investigated using the intracellular Ca2+ chelator 1,2-bis(o-aminophenoxy)-ethane-N, N, N′, N′-tetraacetic acid (BAPTA). A cell permeable acetoxymethyl (AM) ester derivative BAPTA (BAPTA/AM) was loaded into primary mouse keratinocytes in 0.05 mM Ca2+ medium, and then the cells were induced to differentiate by medium containing 0.12 or 0.5 mM Ca2+. Intracellular BAPTA loaded by BAPTA/AM (15–30 μM) inhibited the expression of epidermal differentiation-specific proteins keratin 1 (K1), keratin 10 (K10), filaggrin and loricrin as detected by immunoblotting. The differentiation-associated redistribution of E-cadherin on the cell membrane was delayed but not inhibited as determined by immunofluorescence. BAPTA also inhibited the expression of K1, K10 and Ioricrin mRNA. Furthermore, BAPTA prevented the decrease in DNA synthesis induced by 0.12 and 0.5 mM Ca2+, indicating the drug was inhibiting differentiation but was not toxic to keratinocytes. To evaluate the influence of BAPTA on intracellular Ca2+, the concentration of intracellular free Ca2+ (Cai) in BAPTA-loaded keratinocytes was examined by digital image analysis using the Ca2+-sensitive fluorescent probe fura-2, and Ca2+ influx was measured by 45Ca2+ uptake studies. Increase in extracellular Ca2+ (Cao) in the culture medium of keratinocytes caused a sustained increase in both Cai and Ca2+ localized to ionomycin-sensitive intracellular stores in keratinocytes. BAPTA lowered basal Cai concentration and prevented the Cai increase. After 12 hours of BAPTA treatment, the basal level of Cai returned to the control value, but the Ca2+ localized in intracellular stores was substantially decreased. 45Ca2+ uptake was initially (within 30 min) increased in BAPTA-loaded cells. However, the total 45Ca2+ accumulation over 24 hours in BAPTA-loaded cells remained unchanged from control values. These results indicate that keratinocytes can maintain Cai and total cellular Ca2+ content in the presence of increased amount of intracellular Ca2+ buffer (e.g., BAPTA) by depleting intracellular Ca2+ stores over a long period. The inhibition by BAPTA of keratinocyte differentiation marker expression may result from depletion of the Ca2+-stores since this is the major change in intracellular Ca2+ detected at the time keratinocytes express the differentiation markers. In contrast, the redistribution of E-cadherin on the cell membrane may be more directly associated with Cai change. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The present findings associate phospholipid alteration, particularly the turnover of phosphatidylinositol, in Ca2+ induced differentiation of keratinocytes. These conclusions are based on the hydrolysis of 14C-AA from prelabeled PI and the accumulation 14C-DG and 14C-PA after cells are switched from low to normal concentrations of extracellular Ca2+. This novel finding implies that the biological changes which accompany keratinocyte differentiation after switch from low to normal extracellular medium may be due at least in part to increased accumulation of PA and DG which are major deacylation and reacylation products of phosphatidylinositol. A second interesting finding in these studies is the marked transformation of 14C-AA into lipoxygenase products by proliferating keratinocytes cultured in low Ca2+ medium when compared to differentiating cells cultured in normal Ca2+. The significance of decreased generation of lipoxygenase products in epidermal differentiation deserve further exploration.  相似文献   

6.
A mutation of Atp2a2 gene encoding the sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) causes Darier's disease in human and null mutation in one copy of Atp2a2 leads to a high incidence of squamous cell tumor in a mouse model. In SERCA2 heterozygote (SERCA2+/−) mice keratinocytes, mechanisms involved in partial depletion of SERCA2 gene and its related tumor induction have not been studied. In this study, we investigated Ca2+ signaling and differential gene expression in primary cultured keratinocytes from SERCA2+/− mice. SERCA2+/− keratinocytes showed reduced initial increases in intracellular concentration of calcium in response to ATP, a G-protein coupled receptor agonist, and higher store-operated Ca2+ entry with the treatment of thapsigargin, an inhibitor of SERCA, compared to wild type kerationcytes. Protein expressions of plasma membrane Ca2+ ATPases, NFATc1, phosphorylated ERK, JNK, and phospholipase γ1 were increased in SERCA2+/− keratinocytes. Using the gene fishing system, we first found in SERCA2+/− keratinocytes that gene level of tumor-associated calcium signal transducer 1, crystalline αB, procollagen XVIII α1, and nuclear factor I-B were increased. Expression of involucrin, a marker of keratinocyte differentiation, was decreased in SERCA2+/− keratinocytes. These results suggest that the alterations of Ca2+ signaling by SERCA2 haploinsufficiency alternate the gene expression of tumor induction and differentiation in keratinocytes.  相似文献   

7.
Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC) have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS). After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC); these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a readily available and accessible source of keratinocytes, particularly for severe wounds encompassing large surface areas of the body and requiring prompt epithelialization.  相似文献   

8.
The role of extracellular calcium (Caex) in modulating keratinocyte differentiation has been well documented, but its role in proliferation has been harder to define due to the confounding effect of terminal differentiation. Because strontium (Sr) does not induce terminal differentiation in murine keratinocytes but does mimic the stimulatory effect of Caex on DNA synthesis in chick fibroblasts, experiments were undertaken to determine if Sr could be used to separate the presumably opposing effects of Caex on the proliferation and differentiation of cultured human keratinocytes. In response to additions of SrCl2, keratinocytes in a serum-free hormone-supplemented basal medium containing 0.03 mM Ca showed a dose-dependent increase in day 7 cell yields. Cell yield in the optimal concentration of SrCl2 (1.8 mM) was approximately twice that obtained in any concentration of CaCl2. Maximally stimulatory additions of CaCl2 varied from 0.05 to 1.8 mM, but 0.03 and 0.05 mM additional CaCl2 always increased cell yield relative to unsupplemented controls. Keratinocytes grown in low levels of CaCl2 or any level of SrCl2 have minimal contact with each other regardless of cell density in contrast to the colonies of tightly apposed and stratified cells grown in 1.8 mM CaCl2. Transmission electron micrographs of vertically sectioned confluent cultures in low or high levels of SrCl2 or in low levels of CaCl2 revealed abundant ribosomes and keratin filaments but no stratification or desmosomes, while cultures in 1.8 mM CaCl2 were stratified with numerous desmosomes. These results suggest that Caex may separately stimulate keratinocyte proliferation and terminal differentiation and that Srex can substitute for Caex in the former but not the latter process.  相似文献   

9.
Primary mouse keratinocytes in culture are induced to terminally differentiate by increasing extracellular Ca2+ concentrations (CaO) from 0.05 mM to ≥ 0.1 mM. The addition of Sr2+ (≥ 2.5 mM) to medium containing 0.05 mM Ca2+ induces focal stratification and terminal differentiation, which are similar to that found after increasing the CaO to 0.12 mM. Sr2+ in 0.05 mM Ca2+ medium induces the expression of the differentiation-specific keratins, keratin 1 (K1), keratin 10 (K10), and the granular cell marker, filaggrin, as determined by both immunoblotting and immunofluorescence. Sr2+ induces the expression of those differentiation markers in a dose dependent manner, with an optimal concentration of 5 mM. In the absence of Ca2+ in the medium, the Sr2+ effects are reduced, and Sr2+ is ineffective when both Ca2+ and serum are deleted from the medium. Sr2+ treatment increases the ratio of fluorescence intensity of the intracellular Ca2+ sensitive probe, fura-2, indicating an associated rise in the level of intracellular free Ca2+ and/or Sr2+. At doses sufficient to induce differentiation, Sr2+ also increases the level of inositol phosphates in primary keratinocytes within 30 min. The uptake curves of 85Sr2+ by primary keratinocytes are similar to those of 45Ca2+. At low concentrations, the initial uptake of both 45Ca2+ and 85Sr2+ reaches a plateau within 1 hr; at higher concentrations, the uptake of both 45Ca2+ and 85Sr2+ increases continuously for 12 hr. In keratinocytes pre-equilibrated with 45Ca2+ in 0.05 mM Ca2+ medium, Sr2+ causes an increase of 45Ca2+ uptake, which is dependent on the presence of serum. These results suggest that Sr2+ utilizes the same signalling pathway as Ca2+ to induce keratinocyte terminal differentiation and that Ca2+ may be required to exert these effects. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Summary— Recently, several proteins immunologically related to erythrocyte membrane skeletal proteins, such as protein 4.1 and fodrin (non-erythroid spectrin), have been found in keratinocytes. In the present study, in order to investigate the roles of these proteins in cell-cell contact, we analyzed the distribution of non-erythroid protein 4.1, β-fodrin and actin in cultured human keratinocytes at low (0.15 mM) and standard (1.85 mM) Ca2+ concentrations. Immunofluorescence microscopy revealed that immunoreactive forms of protein 4.1, β-fodrin and actin filaments were present in the cytoplasm of cells cultured in low Ca2+ medium, while in cells in the standard Ca2+ medium, these proteins were localized at the cell boundary and partially in the cytoplasm. When cells in the low-Ca2+ medium were treated with 100 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 1 h, these proteins were also present at the cell boundary. Increasing extracellular Ca2+ concentration from low to standard in the medium induces cell-cell contact among the cultured human keratinocytes, accompanied by the translocation of protein 4.1 and β-fodrin from the cytoplasm to the membrane. On the basis of the present study, movement of membrane skeletal proteins from the cytosol to the membrane suggests that either these proteins or the membrane skeletal lattice plays an important role in the regulation of cell-cell intergigitations in response to changes in the Ca2+ concentrations in culture medium, and that phosphorylation of these skeletal proteins might be involved in the regulation of the membrane skeletal proteins of keratinocytes in response to Ca2+.  相似文献   

11.
Direct cell-cell contact between melanocytes and keratinocytes has been shown to play an important role in the regulation of human melanocyte function and skin pigmentation. An important role for the calcium-dependent epithelium-specific cell adhesion molecule, E-cadherin, in melanocyte-keratinocyte adhesion was suggested previously. To further clarify regulation of E-cadherin-mediated melanocyte-keratinocyte interactions, we investigated the effects of physiological (Ca2+) and environmental (ultraviolet B [UVB] radiation) stimuli on the expression and functional activity of E-cadherin in melanocyte-keratinocyte adhesion. Expression of E-cadherin mRNA was detected by Northern blot analysis in cultured normal human melanocytes at levels similar to those in keratinocytes. Flow cytometry analysis with anti-human and anti-mouse-E-cadherin antibodies (anti-uvomorulin and ECCD-2) showed that cultured normal human keratinocytes, melanocytes, and two metastatic melanoma cell lines express E-cadherin strongly on the cell surfaces. Melanocyte adhesion, particularly to differentiating keratinocytes (cultured in 1.2 mM calcium) but not to proliferating keratinocytes or to fibroblasts, was decreased by 41.7 ± 4.5% in the absence of 1 mM Ca2+ during the binding assay. Addition of anti-mouse-E-cadherin antibody (ECCD-1) to the binding assay inhibited the adhesion of melanocytes to differentiating keratinocytes by 88.2 ± 1.1%, while addition of anti-P-cadherin antibody (PCD-1) had no effect. The levels of E-cadherin expression in melanocytes were not changed by the presence of calcium (1 mM) in the medium or by UVB irradiation (20 mJ/cm2) for one day before flow cytometry analysis. Moreover, these treatments had no effect on melanocyte-keratinocyte adhesion. These results demonstrate that E-cadherin is strongly involved in melanocyte adhesion to keratinocytes and suggest the implication of E-cadherin in the overall regulation of the skin pigmentary system.  相似文献   

12.
Toll-like receptor 7 (TLR7) is an important member in pattern recognition receptors families. TLR7 signal pathway is involved in the physiological process in many type cells, but the impact of TRL7 on differentiation in the human keratinocytes is still unknown. In this study, we investigated the expression of TLR7 in keratinocytes, and the effect of TLR7 agonist gardiquimod on the expression of calcium (Ca2+)-induced keratinocytes differentiation markers in HaCaT cells. Immunohistochemistry and western-blotting analysis showed that TLR7 is expressed in basal keratinocytes of normal skin and in the human keratinocyte cell line HaCaT, but not expressed in the keratinocytes of psoriasis lesions. Pretreatment with gardiquimod could down-regulate Ca2+-induced differentiation marker expression and activate Raf-MEK-ERK and PI3K-AKT signal pathways in HaCaT cells. However, specific inhibitors studies showed that the down-regulation of the differentiation markers expression by gardiquimod was not dependent on the activation of these two pathways. TLR7 may play an important role in the pathogenesis of psoriasis through regulating the differentiation of the keratinocytes, and will give a new insight into the psoriasis.  相似文献   

13.
The steroid hormone 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) regulates cell proliferation and differentiation. Intracellular calcium (Cai) concentrations play a crucial role in these events. From our previous studies, we have demonstrated a calcium receptor (CaR) in keratinocytes which appears to regulate the initial release of Cai from intracellular stores in response to extracellular calcium (Cao) and so is likely to participate in the differentiation process. In this study, we determined whether the ability of 1,25(OH)2D3 to enhance Ca++ -induced differentiation was mediated at least in part through changes in the CaR. Keratinocytes were grown in keratinocyte growth medium (KGM) with 0.03 mM, 0.1 mM, or 1.2 mM Ca and treated with 10(-8) M 1,25(OH)2D3 till harvest after 5, 7, 14, and 21 days. CaR mRNA levels were quantitated by polymerase chain reaction. The results were compared to the ability of 1,25(OH)2D3 to enhance calcium-stimulated increases in Cai. In cells grown in 0.03 mM Ca, the CaR mRNA levels decreased with time. 1,25(OH)2D3 stimulated the levels at 5 days and prevented the falloff over the subsequent 16 days. On the other hand, in cells grown in 0.1 or 1.2 mM Ca, the message levels remained high, and 1,25(OH)2D3 had no further effect. To study the functional relationship, we harvested cells after 5 and 7 days in culture following a 24 h treatment with 1,25(OH)2D3 or vehicle to measure the Cai response to 2 mM Cao. The preconfluent cells grown in 0.03 mM Ca showed a nearly twofold increase in the Cai response to Cao when pretreated with 1,25(OH)2D3, whereas the confluent cells and those grown in 1.2 mM Ca showed no enhancement by 1,25(OH)2D3. Studies with 45Ca influx into keratinocytes revealed that 1,25(OH)2D3 enhanced the influx in preconfluent and confluent cells when grown in KGM containing 0.03 mM Ca but not in cells grown in 1.2 mM calcium. We conclude that 1,25(OH)2D3 maintains the CaR mRNA levels in cells grown in 0.03 mM Ca, thus maintaining their responsiveness to Cao and so ensuring their ability to differentiate in response to the calcium signal.  相似文献   

14.
Involucrin is a precursor protein of detergent-insoluble cornified envelope and a marker of terminal differentiation of epidermal keratinocytes. To quantify differentiation of cultured human keratinocytes, the population of involucrin-positive cells was estimated by immunofluorescent staining using anti-involucrin antibody and flow cytometry. Normal human keratinocytes were cultured under three conditions for induction of differentiation: low Ca2+ concentration (0.1 mM Ca2+), high Ca2+ concentration (1.8 mM Ca2+), and high Ca2+ concentration with 10% fetal bovine serum (FBS). The relationship between fluorescence intensity and involucrin synthesis was confirmed by visual examination of sorted cells. The population of involucrin-positive cells increased from 7.2 to 18.1% by elevating Ca2+ concentration and to 37.0% by adding FBS. The extent of cornified envelope formation under the same culture conditions was consistent with the estimation of involucrin-positive cells. The cytofluorographic analysis of involucrin synthesis made it possible to determine the number of differentiated cells in a large number of samples precisely and reliably. Thus, it is a useful method for quantifying keratinocyte differentiation.  相似文献   

15.
We have used the human calcium- and temperature-dependent (HaCaT) keratinocyte cell line to elucidate mechanisms of switching from a proliferating to a differentiating state. When grown in low calcium medium (<0.1 mM) HaCaT cells proliferate. However, an increase in the calcium concentration of the culture medium, [Ca2+]0, induces growth arrest and the cells start to differentiate. Numerous studies have already shown that the increase in [Ca2+]0 results in acute and sustained increases in intracellular calcium concentration, [Ca2+]i. We find that the Ca2+-induced cell differentiation of HaCaT cells is also accompanied by a significant decrease in mitochondrial membrane potential, DeltaPsi. By combining patch-clamp electrophysiological recordings and microspectrofluorimetric measurements of DeltaPsi on single cells, we show that the increase in [Ca2+]i led to DeltaPsi depolarization. In addition, we report that tetraethylammonium (TEA), a blocker of plasma membrane K+ channels, which is known to inhibit cell proliferation, and 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), a blocker of plasma membrane Cl channels, also affect DeltaPsi. Both these agents stimulate HaCaT cell differentiation. These data therefore strongly suggest a direct causal relationship between depolarization of DeltaPsi and the inhibition of proliferation and induction of differentiation in HaCaT keratinocytes.  相似文献   

16.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37°C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 ± 0.5 mM (± S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane.  相似文献   

17.
To determine whether asymmetrical cell division takes place during growth and differentiation of corneal epithelial cells, we analyzed the expression of some proteins required for the correct execution of the asymmetric division in cultured RCE1‐(5T5) cells, which mimic the differentiation of corneal epithelial cells. RT‐PCR and immunostaining showed that Par‐3, LGN (GPSM2), NuMA, and the mammalian homolog of inscuteable (Insc) are expressed by the cultured cells. Semi‐quantitative RT‐PCR demonstrated that Insc mRNA levels were stable throughout the experiment. Conversely, LGN and NuMA mRNAs increased slightly and steadily in proliferative cells, reaching a peak of about 20% above basal levels when cells were confluent. At later times, LGN and NuMA mRNAs decreased to become barely detectable when cells organized into a four‐layered epithelium and expressed terminal phenotype as indicated by the highest expression of LDH‐H mRNA. Cultivation under low Ca2+ conditions (0.09 mM) reduced about 50% Insc mRNA expression both in proliferating and confluent cultures, but did not affect the levels of LGN and NuMA mRNAs. Hence, asymmetric cell division seems to take place with a lower frequency in cells grown with low Ca2+ concentrations, in spite of the absence of stratification. Immunostaining experiments raise the possibility of an interaction between k3/K12 keratin cytoskeleton and Par‐3. The results show for the first time the coordination between the expression of corneal epithelial cell differentiation and the expression of cell polarity machinery. They also suggest that asymmetric division does not depend on stratification; instead, it seems to be part of the differentiation program. J. Cell. Physiol. 226: 700–709, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The cultivation of mouse epidermal cells in medium of reduced calcium concentration (0.02–0.1 mM) selects for basal cell growth. Elevation of medium calcium levels above 0.1 mM results in rapid and well defined differentiative changes. This model was utilized to determine which cell type in mouse epidermis responds to the phorbol ester tumor promoter, 12-0-tetradecanoyl-phorbol-13-acetate (TPA), by an induction of the enzyme ornithine decarboxylase (ODC). Previous data had shown that TPA induces ODC in primary mouse epidermal cells only during the first 36 hr after plating in medium containing 1.44 mM Ca2+. In contrast, the induction in cells grown in low calcium medium was 2–10-fold greater, and inducibility persisted for at least 4 weeks. The greater inducibility of ODC in low calcium cells is not paralleled by increased thymidine incorporation after TPA treatment, probably because these cells are already proliferating at a maximum rate. When low calcium cells grown in 0.07 mM Ca2+ medium were switched to 1.2 mM Ca2+, there was a rapid loss of ODC inducibility. These results strongly suggest that the basal cells of the epidermis constitute the major target cells for the induction of ODC by TPA. The induction of ODC by ultraviolet light was not enhanced by growth of cells in low calcium medium, indicating that extracellular calcium concentration per se does not determine ODC inducibility. When epidermal cells grown in 1.2 mM or 0.07 mM Ca2+ medium were exposed to both UV light and TPA, there was a significant synergistic effect of combined treatment over the sum of each individual response, suggesting that factors in addition to differentiation determine the extent of ODC induction.  相似文献   

19.
Explants obtained from young sporophytes of Saccharina japonica were cultured in an artificial medium with different concentrations of Ca2+ (0–20?mM). The culture with 10?mM Ca2+ promoted the formation of unpigmented filamentous callus-like cells in the cortical layer. In contrast, explants cultured with 5?mM Ca2+ formed pigmented round callus-like cells in the epidermis at a high percentage. The thallus regeneration rate of explants in 5?mM Ca2+ was ten times higher than those of explants cultured in 10?mM Ca2+. Ambient Ca2+ concentrations also influenced the production of radical oxygen species (ROS) in explants. Explants cultured in 10?mM Ca2+ produced higher ROS than did those cultured in 5?mM. The ROS production was histologically observed mainly in the plasma membrane of callus-like cells using 2′, 7′-dichlorodihydrofluorescein diacetate. Moreover, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, diphenyleneiodonium chloride, inhibited the ROS production with propagation of filamentous callus-like cells. These results suggest that Ca2+ concentration in medium influences the development of callus-like cells and thallus regeneration by affecting NADPH oxidase activity and ROS production in the plasma membrane of the callus-like cells. Therefore, the morphological form of callus-like cells and the development of thallus will be controlled by Ca2+ concentration in the medium.  相似文献   

20.
The expression and modulation of IL-1 alpha in murine keratinocytes   总被引:6,自引:0,他引:6  
Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low [Ca2+] tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high [Ca2+] media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low [Ca2+] conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes. Thus LPS, UV, and cell differentiation state have a significant effect on expression of IL-1 alpha in murine keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号