首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The taurine (Tau) containing N-protected pseudotripeptide isopropylamide Z-Tau-Pro-D-Phe-NHiPr (1) has been specifically designed and synthesized as suitable model to test the ability of the sulfonamido group to participate as H-bond acceptor to a type II beta-turn and to get information on the preferred rotameric conformation around the S-N bond and the hybridization state of the nitrogen atom. The present structural investigation reveals that, although the sulfonamide junction is invariably folded in a gauche mode, the beta-turn structure, stabilized by the 4 --> 1 hydrogen bond, is not found in the crystal and the sulfonamido oxygen atoms are not involved in any intra- or intermolecular hydrogen-bond interaction. More than one conformer populates the CDCl(3) solution with only a minor contribution by the expected beta-turn. The Pro nitrogen is significantly pyramidalized and the nitrogen lone pair points in opposite direction to that of the Pro C(alpha)H bond thus adopting R chirality, in an arrangement practically identical to that found in the previously studied homochiral analogue Z-Tau-Pro-Phe-NHiPr.  相似文献   

2.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

3.
The new Cα-tetrasubstituted α-amino acid residue 2-[2′-(methylthio) ethyl]methionine (Dmt) has been introduced into the reference chemotactic tripeptide HCO-Met-Leu-Phe-OMe (fMLP-OMe) in place of the leucine or methionine, respectively. The biological activity of the new analogues [Dmt2] fMLP-OMe (2) and [Dmt1] fMLP-OMe (3) has been determined; whereas 2 is active toward human neutrophils, stimulating directed migration, superoxide anion generation, and lysozyme release, 3 results practically inactive in all tested assays. A conformational analysis on 2 and 3 has been performed in solution by using ir absorption and 1H-nmr. The conformation of 2 was also examined in the crystal by x-ray diffraction methods. Both 2 and 3 adopt fully extended conformation in correspondence with the Dmt residue. Biological and conformational results are discussed and compared with related previously studied models. © 1997 John Wiley & Sons, Inc. Biopoly 42: 415–426, 1997  相似文献   

4.
Three β-adrenergic receptor subtypes are now known to be functionally expressed in mammals. All three belong to the R7G family of receptors coupled to G-proteins, and characterized by an extracellular glycosylated N-terminal and an intracellular C-terminal region and seven transmembrane domains, linked by three exta- and three intracellular loops. The catecholamine ligand binding domain, studied using affinity-labeling and site-directed mutagenesis, is a pocket lined by residues belonging to the transmembrane domains. The region responsible for the interaction with the Gs protein which, when activated, stimulates adenylyl cyclase, is composed of residues belonging to the parts most proximal to the membrane of intracellular loop i3 and the C-terminal region. The pharmacology of the three subtypes is quite distinct: in fact most of the potent β12 antagonists (the well known β blockers) act as agonists on β3. The subtype is resistant to short-term desensitization mediated by phosphorylation through PKA or βARK, in stark contrast to the β1 or β2 subtypes. Various compounds (dexamethasone, butyrate, insulin) up regulate β1 or β1 subtypes while down-regulating β3 whose expression strictly correlates with differentiation of 3T3-F442A fibroblasts into adipocytes, thus confirming that the expression of the three subtypes may each be regulated independently to exert a specific physiologic role in different tissues or at different stages of development.  相似文献   

5.
Methyl β- -glucopyranoside reacted with a 4-molar excess of the Mitsunobu reagents (triphenylphosphine–diethyl azodicarboxylate–benzoic acid) under Weinges et al. [Carbohydr. Res., 164 (1987) 453–458] conditions to furnish four differently benzoylated methyl β- -allopyranosides in a very good overall yield. The same reaction applied to methyl α- -glucopyranoside yielded allosides in a low yield and nine other sugar products. These results give an insight into the course of the Mitsunobu esterification–inversion reaction.  相似文献   

6.
By applying the method of amino-acyl incorporation to sulfonamido peptides, cyclo(-MeTau-Phe-DPro-) 3 has been synthesized in high yield starting from Z-MeTau-Phe-Pro-OH. The crystal structure and the molecular conformation of 3 have been determined. Crystals are orthorhombic, s.g. P2(1)2(1)2(1), with a = 5.454, b = 13.486, c = 24.025 A. The structure has been solved by direct methods and refined to R = 0.039 for 1974 reflections with I greater than 1.5 sigma (I). The 10-measured cyclopeptide adopts a backbone conformation in the crystals characterized by Phe-DPro and DPro-MeTau peptide bonds in trans and cis conformation, respectively. Both the peptide bonds deviate significantly from planarity and the corresponding [delta omega[ values are ca. 12 degrees. The sulfonamide SO2NH junction adopts a cisoidal conformation with a C alpha 1-S1-N2-C alpha 2 torsion angle of 70.8 degrees. 13C n.m.r. data show that the trans geometry at the Phe-DPro junction found in the crystals is retained in DMSO solution. The 10-membered ring of 3 is characterized by a pseudo mirror-plane passing through the Phe nitrogen and the DPro carbonylic carbon. The DPro ring adopts a half-chair conformation. The Phe side chain conformation corresponds to the statistically most favored g- rotamer (chi 1 = -68.6 degrees). The crystal packing is characterized by a weak intermolecular hydrogen bond between NH group and the MeTau O1' oxygen.  相似文献   

7.
β‐Amino acids containing hybrid peptides and β‐peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the µ‐ and δ‐opioid receptors of β‐peptides, analogues of Leu‐enkephalin, deltorphin I, dermorphin and α,β‐hybrides, analogues of deltorphin I. Substitution of α‐amino acid residues with β3homo‐amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β3h‐D ‐Ala in position 2 or β3hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ‐opioid receptor. The NMR studies of β‐deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The involvement of carnitine and gamma-amino-beta-hydroxybutyric acid in the biology of mammalian cells, the physiology of the human body, and some important aspects of medicinal treatment has induced many research groups to develop their pharmacologically potent analogues. Among them are the very important phosphonic analogues: phosphocarnitine and gamma-amino-beta-hydroxypropylphosphonic acid. This mini-review describes the various methodologies used for the synthesis of these compounds.  相似文献   

9.
Folding, an attribute common to biological macromolecules such as proteins and nucleic acids, enables the formation of complex three-dimensional structure and thus enables the function of these exquisite molecular machines. Chemists are exploring the folding of natural and artificial systems with increasing enthusiasm and boldness of molecular design. The most recent achievements in the area of artificial folding molecules are described in this review.  相似文献   

10.
Secondary structure formation and stability are essential features in the knowledge of complex folding topology of biomolecules. To better understand the relationships between preferred conformations and functional properties of beta-homo-amino acids, the synthesis and conformational characterization by X-ray diffraction analysis of peptides containing conformationally constrained Calpha,alpha-dialkylated amino acid residues, such as alpha-aminoisobutyric acid or 1-aminocyclohexane-1-carboxylic acid and a single beta-homoamino acid, differently displaced along the peptide sequence have been carried out. The peptides investigated are: Boc-betaHLeu-(Ac6c)2-OMe, Boc-Ac6c-betaHLeu-(Ac6c)2-OMe and Boc-betaHVal-(Aib)5-OtBu, together with the C-protected beta-homo-residue HCl.H-betaHVal-OMe. The results indicate that the insertion of a betaH-residue at position 1 or 2 of peptides containing strong helix-inducing, bulky Calpha,alpha-disubstituted amino acid residues does not induce any specific conformational preferences. In the crystal state, most of the NH groups of beta-homo residues of tri- and tetrapeptides are not involved in intramolecular hydrogen bonds, thus failing to achieve helical structures similar to those of peptides exclusively constituted of Calpha,alpha-disubstituted amino acid residues. However, by repeating the structural motifs observed in the molecules investigated, a beta-pleated sheet secondary structure, and a new helical structure, named (14/15)-helix, were generated, corresponding to calculated minimum-energy conformations. Our findings, as well as literature data, strongly indicate that conformations of betaH-residues, with the micro torsion angle equal to -60 degrees, are very unlikely.  相似文献   

11.
A new class of divalent thrombin inhibitors is described that contains an α-keto-amide transition-state mimetic linking an active site binding group and a group that binds to the fibrinogen-binding exosite. The X-ray crystallographic structure of the most potent member of this new class, CVS995, shows many features in common with other divalent thrombin inhibitors and clearly defines the transition-state-like binding of the α-keto-amide group. The structure of the active site part of the inhibitor shows a network of water molecules connecting both the side-chain and backbone atoms of thrombin and the inhibitor. Direct peptide analogues of the new transition-state-containing divalent thrombin inhibitors were compared using in vitro assays of thrombin inhibition. There was no direct correlation between the binding constants of the peptides and their α-keto-amide counterparts. The most potent cv-keto-amide inhibitor, CVS995, with a Ki = 1 pM, did not correspond to the most potent divalent peptide and contained a single amino acid deletion in the exosite binding region with respect to the equivalent region of the natural thrombin inhibitor hirudin. The interaction energies of the active site, transition state, and exosite binding regions of these new divalent thrombin inhibitors are not additive.  相似文献   

12.
New analogues of deltorphin I (DT I, Tyr‐d ‐Ala‐Phe‐Asp‐Val‐Val‐Gly‐NH2), with the d ‐Ala residue in position 2 replaced by α‐methyl‐β‐azido(amino, 1‐pyrrolidinyl, 1‐piperidinyl or 4‐morpholinyl)alanine, were synthesized by a combination of solid‐phase and solution methods. All ten new analogues were tested for receptor affinity and selectivity to μ‐ and δ‐opioid receptors. The affinity of analogues containing (R) or (S)‐α‐methyl‐β‐azidoalanine in position 2 to δ‐receptors strongly depended on the chirality of the α,α‐disubstituted residue. Peptide II , containing (S)‐α‐methyl‐β‐azidoalanine in position 2, displayed excellent δ‐receptor selectivity with its δ‐receptor affinity being only three times lower than that of DT I. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The effects of (±)-, (+)-, and (?)-atenolol, sotalol, and amosulalol alone on the rat left atria and portal vein and on the respective β1- and β2-adrenoceptor-mediated responses to isoprenaline have been determined. (±)-Atenolol at 10?6 M had no effect whereas high concentrations of (+)- and (?)-sotalol, 10?5–10?4 M, and (±)-, (+)-, and (?)-amosulalol depressed the response of the rat left atria to cardiac stimulation which indicates membrane stabilizing activity. None of the drugs tested had any effect alone on the rat portal vein. The order of potency as antagonists was (±)-amosulalol > (±)-atenolol > (±)-sotalol at β1-adrenoceptors and (±)-amosulalol > (±)-sotalol > (±)-atenolol at β2-adrenoceptors. (±)-Atenolol and (±)-amosulalol are β1-selective whereas (±)-sotalol is β2-selective. For each of the racemic β-blockers, the β1- and β2-adrenoceptor blocking activity was predominantly due to the (?)-enantiomer. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

15.
β-methylaspartate ammonia-lyase, EC 4.3.1.2, (β-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b , respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)- 3a yielded the α,β-substituted β-lactone (3R,4R) 6 with a very high diastereoisomeric excess (>95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl β-(2R,3S)-3-methylmalate] 8 , prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7 , to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of β-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions. Chirality 10:727–733, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
β-Amyloid peptides are the main protein components of neuritic plaques and may be important in the pathogenesis of Alzheimer's Disease. The determination of the structure of β-amyloid fibrils poses a challenge because of the limited solubility of β-amyloid peptides and the noncrystalline nature of fibrils formed from these peptides. In this paper, we describe several physicochemical approaches which have been used to examine fibrils and the fibrillogenesis of peptide models of β-amyloid. Recent advances in solid state NMR, such as the DRAWS pulse sequence, have made this approach a particularly attractive one for peptides such as β-amyloid, which are not yet amenable to high-resolution solution phase NMR and crystallography. The application of solid state NMR techniques has yielded information on a model peptide comprising residues 10–35 of human β-amyloid and indicates that in fibrils, this peptide assumes a parallel β-strand conformation, with all residues in exact register. In addition, we discuss the use of block copolymers of Aβ peptides and polyethylene glycol as probes for the pathways of fibrillogenesis. These methods can be combined with other new methods, such as high-resolution synchrotron X-ray diffraction and small angle neutron and X-ray scattering, to yield structural data of relevance not only to disease, but to the broader question of protein folding and self-assembly.  相似文献   

17.
18.
The crystal structure of the model tripeptide Boc-Aib-Gly-Leu-OMe ( 1 ) reveals two independent molecules in the asymmetric unit that adopt “enantiomeric” type I and type I′ β-turn conformations with the Aib and Gly residues occupying the corner (i + 1 and i + 2) positions. 13C cross polarization and magic angle sample spinning spectra in the solid state also support the coexistence of two conformational species. 13C-nmr in CDCl3 establishes the presence of a single species or rapid exchange between conformations. 400 MHz 1H-nmr provides evidence for conformational exchange involving a major and minor species, with β-turn conformations supported by the low solvent exposure of Leu(3) NH and the observation of NiH ↔ Ni+1H nuclear Overhauser effects. CD bands in the region 190–230 nm are positive, supporting a major population of type I′ β-turns. The isomeric peptide, Boc-Gly-Leu-Aib-OMe ( 2 ), adopts an “open” type II′ β-turn conformation in crystals. Solid state and solution nmr support population of a single conformational species. Chiral perturbation introduced outside the folded region of peptides may provide a means of modulating screw sense in achiral sequences. © 1998 John Wiley & Sons, Inc. Biopoly 45: 191–202, 1998  相似文献   

19.
We have synthesized and crystallized the cyclic peptide (Gly-Aib-Gly) 2. Its structure has been determined by conventional X-ray diffracti on methods. In the crystal it adopts a conformation with one β-turn (type I) and its mirror image at the other side of the ring. All conformation al angles are similar to those reported for these amino acid residues. In particular the Aib residue has a conformation intermediate between α- and 310-helical conformations. The ring is an adequate model for the β-turn conformation. A molecule of formic acid is found in the crystal which shows a very short hydrogen bond with one of the glycine carbonyl groups.  相似文献   

20.
The purpose of this paper was to study the immobilization of two glycosidases, α- -arabinofuranosidase (EC 3.2.1.55) and β- -glucopyranosidase (EC 3.2.1.21), contained in a commercial preparation and purified as reported in Part I. The procedure which proved to be the best is simple and inexpensive to perform, employing the chitosan derivative, glyceryl-chitosan, especially synthesized and characterized, as a support. The glycosidases were adsorbed on this support and cross-linked with glutaraldehyde to prevent them from being released into the wine. Subsequent reduction of the biocatalyst with sodium borohydride allowed for improved stability. Finally, the immobilized glycosidases were compared with free ones in terms of optimum pH and temperature, stability over time, and kinetics parameters (Km and Vmax) after which they were employed for aromatizing a model wine solution containing aromatic precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号