Methyl β--glucopyranoside reacted with a 4-molar excess of the Mitsunobu reagents (triphenylphosphine–diethyl azodicarboxylate–benzoic acid) under Weinges et al. [Carbohydr. Res., 164 (1987) 453–458] conditions to furnish four differently benzoylated methyl β--allopyranosides in a very good overall yield. The same reaction applied to methyl α--glucopyranoside yielded allosides in a low yield and nine other sugar products. These results give an insight into the course of the Mitsunobu esterification–inversion reaction. 相似文献
Three β-adrenergic receptor subtypes are now known to be functionally expressed in mammals. All three belong to the R7G family of receptors coupled to G-proteins, and characterized by an extracellular glycosylated N-terminal and an intracellular C-terminal region and seven transmembrane domains, linked by three exta- and three intracellular loops. The catecholamine ligand binding domain, studied using affinity-labeling and site-directed mutagenesis, is a pocket lined by residues belonging to the transmembrane domains. The region responsible for the interaction with the Gs protein which, when activated, stimulates adenylyl cyclase, is composed of residues belonging to the parts most proximal to the membrane of intracellular loop i3 and the C-terminal region. The pharmacology of the three subtypes is quite distinct: in fact most of the potent β1/β2 antagonists (the well known β blockers) act as agonists on β3. The subtype is resistant to short-term desensitization mediated by phosphorylation through PKA or βARK, in stark contrast to the β1 or β2 subtypes. Various compounds (dexamethasone, butyrate, insulin) up regulate β1 or β1 subtypes while down-regulating β3 whose expression strictly correlates with differentiation of 3T3-F442A fibroblasts into adipocytes, thus confirming that the expression of the three subtypes may each be regulated independently to exert a specific physiologic role in different tissues or at different stages of development. 相似文献
Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In this study, we show that VGAT recognizes β‐alanine as a substrate. Proteoliposomes containing purified VGAT transport β‐alanine using Δψ but not ΔpH as a driving force. The Δψ‐driven β‐alanine uptake requires Cl?. VGAT also facilitates Cl? uptake in the presence of β‐alanine. A previously described VGAT mutant (Glu213Ala) that disrupts GABA and glycine transport similarly abrogates β‐alanine uptake. These findings indicated that VGAT transports β‐alanine through a mechanism similar to those for GABA and glycine, and functions as a vesicular β‐alanine transporter.
We have synthesized and crystallized the cyclic peptide (Gly-Aib-Gly) 2. Its structure has been determined by conventional X-ray diffracti on methods. In the crystal it adopts a conformation with one β-turn (type I) and its mirror image at the other side of the ring. All conformation al angles are similar to those reported for these amino acid residues. In particular the Aib residue has a conformation intermediate between α- and 310-helical conformations. The ring is an adequate model for the β-turn conformation. A molecule of formic acid is found in the crystal which shows a very short hydrogen bond with one of the glycine carbonyl groups. 相似文献
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide. 相似文献
The conformational characteristics of protected homo‐oligomeric Boc‐[β3(R)Val]n‐OMe, n = 1, 2, 3, 4, 6, 9, and 12 have been investigated in organic solvents using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) absorption spectroscopy and circular dichroism (CD) methods. The detailed 1H NMR analysis of Boc‐[β3(R)Val]12‐OMe reveals that the peptide aggregates extensively in CDCl3, but is disaggregated in 20%, (v/v) dimethyl sulfoxide (DMSO) in CDCl3 and in CD3OH. Limited assignment of the N‐terminus NH groups, together with solvent dependence of NH chemical shifts and temperature coefficients provides evidence for 14‐helix conformation in the 12‐residue peptide. FTIR analysis in CHCl3 establishes that the onset of folding and aggregation, as evidenced by NH stretching bands at 3375 cm−1 (intramolecular) and 3285 cm−1 (intermolecular), begins at the level of the tetrapeptide. The observed CD bands, 214 nm (negative) and 198 nm (positive), support 14‐helix formation in the 9 and 12 residue sequences. The folding and aggregation tendencies of homo‐oligomeric α‐, β‐, and γ‐ residues is compared in the model peptides Boc‐[ωVal]n‐NHMe, ω = α, β, and γ and n = 1, 2, and 3. Analysis of the FTIR spectra in CHCl3, establish that the tendency to aggregate at the di and tripeptide level follows the order β > α∼γ, while the tendency to fold follows the order γ > β > α. 相似文献
Optical resolution of β-(1-naphthyl)alanine and β-(2-naphthyl)alanine have been efficiently carried out through enzymatic hydrolysis of their methyl ester and/or N-acetyl ester derivatives by immobilized enzymes. Difficulties related to the lipophilic character of these amino acids were overcome by using emulsions of n-butyl acetate–water as reaction medium. The use of an automatic recirculating apparatus allowed reproducible and repetitive use of the immobilized biocatalysts. 相似文献
The purpose of this paper was to study the immobilization of two glycosidases, α-
-arabinofuranosidase (EC 3.2.1.55) and β-
-glucopyranosidase (EC 3.2.1.21), contained in a commercial preparation and purified as reported in Part I. The procedure which proved to be the best is simple and inexpensive to perform, employing the chitosan derivative, glyceryl-chitosan, especially synthesized and characterized, as a support. The glycosidases were adsorbed on this support and cross-linked with glutaraldehyde to prevent them from being released into the wine. Subsequent reduction of the biocatalyst with sodium borohydride allowed for improved stability. Finally, the immobilized glycosidases were compared with free ones in terms of optimum pH and temperature, stability over time, and kinetics parameters (Km and Vmax) after which they were employed for aromatizing a model wine solution containing aromatic precursors. 相似文献
The main goal of the present work was to compare the ability of human prostate cancer (PCa) cells to metabolize testosterone (T) in living conditions. To this end we studied three different human PCa cell lines (LNCaP, DU145 and PC3) having different hormone-sensitive status and capability of response to androgens. We used an original approach which allows the evaluation of conversion metabolic rates in growing cells after administration of labeled steroid precursor (presently T), at physiological concentrations (1–10 nM). Analysis of both precursor degradation and formation of several products was carried out using reverse phase-high performance liquid chromatography (RP-HPLC) and “on line” radioactive detection. Comparison of the three human PCa cells revealed that their metabolic aptitude differed in many respects: (i) rates of precursor degradation, (ii) different products' formation, and (iii) extent of conjugate production. In detail, PC3 cells quickly degraded T and exhibited high formation rates of androstenedione (A-4-ene-Ad); both DU145 and LNCaP cells mostly retained high levels of unconverted T, with a limited production of A-4-ene-Ad and its 17-keto derivatives (if any). Either LNCaP or DU145 cells generated a relatively high amount of dihydrotestosterone (DHT). In contrast, neither DHT nor its main metabolites were detected in PC3 cells at both short and longer incubation times. As expected, T degradation and A-4-ene-Ad production were highly correlated (r = 0.97; P < 0.03); similarly, A-4-ene-Ad and DHT formation showed a negative, significant correlation. Negligible production of conjugates was noted in both PC3 and DU145 cells, whilst it was remarkable in LNCaP cells (ranging from 43 to 57%). Overall, our data indicate that human PCa cells degrade T quite differently, favoring alternatively reductive or oxidative patterns of androgen metabolism. 相似文献