首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Competence, specification and commitment in otic placode induction   总被引:3,自引:0,他引:3  
The inner ear is induced from cranial ectoderm adjacent to the hindbrain. Despite almost a century of study, the molecular mechanisms of inner ear induction remain obscure. We have identified four genes expressed very early in the anlage of the inner ear, the otic placode. Pax-2, Sox-3, BMP-7 and Notch are all expressed in placodal ectoderm from the 4-5 somite stage (ss) onwards, well before the otic placode becomes morphologically visible at the 12-14ss. We have used these four molecular markers to show that cranial ectoderm becomes specified to form the otic placode at the 4-6ss, and that this ectoderm is committed to a placodal fate by the 10ss. We also demonstrate that much of the embryonic ectoderm is competent to generate an otic placode if taken at a sufficiently early age. We have mapped the location of otic placode-inducing activity along the rostrocaudal axis of the embryo, and have determined that this activity persists at least until the 10ss. Use of the four molecular otic placode markers suggests that induction of the otic placode in birds occurs earlier than previously thought, and proceeds in a series of steps that are independently regulated.  相似文献   

2.
The sensory nervous system in the vertebrate head arises from two different cell populations: neural crest and placodal cells. By contrast, in the trunk it originates from neural crest only. How do placode precursors become restricted exclusively to the head and how do multipotent ectodermal cells make the decision to become placodes or neural crest? At neural plate stages, future placode cells are confined to a narrow band in the head ectoderm, the pre-placodal region (PPR). Here, we identify the head mesoderm as the source of PPR inducing signals, reinforced by factors from the neural plate. We show that several independent signals are needed: attenuation of BMP and WNT is required for PPR formation. Together with activation of the FGF pathway, BMP and WNT antagonists can induce the PPR in na?ve ectoderm. We also show that WNT signalling plays a crucial role in restricting placode formation to the head. Finally, we demonstrate that the decision of multipotent cells to become placode or neural crest precursors is mediated by WNT proteins: activation of the WNT pathway promotes the generation of neural crest at the expense of placodes. This mechanism explains how the placode territory becomes confined to the head, and how neural crest and placode fates diversify.  相似文献   

3.
Fgf3 and Fgf10 are required for mouse otic placode induction   总被引:1,自引:0,他引:1  
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.  相似文献   

4.
The epibranchial placodes are cranial, ectodermal thickenings that give rise to sensory neurons of the peripheral nervous system. Despite their importance in the developing animal, the signals responsible for their induction remain unknown. Using the placodal marker, sox3, we have shown that the same Fgf signaling required for otic vesicle development is required for the development of the epibranchial placodes. Loss of both Fgf3 and Fgf8 is sufficient to block placode development. We further show that epibranchial sox3 expression is unaffected in mutants in which no otic placode forms, where dlx3b and dlx4b are knocked down, or deleted along with sox9a. However, the forkhead factor, Foxi1, is required for both otic and epibranchial placode development. Thus, both the otic and epibranchial placodes form in a common region of ectoderm under the influence of Fgfs, but these two structures subsequently develop independently. Although previous studies have investigated the signals that trigger neurogenesis from the epibranchial placodes, this represents the first demonstration of the signaling events that underlie the formation of the placodes themselves, and therefore, the process that determines which ectodermal cells will adopt a neural fate.  相似文献   

5.
Much of the peripheral nervous system of the head is derived from ectodermal thickenings, called placodes, that delaminate or invaginate to form cranial ganglia and sense organs. The trigeminal ganglion, which arises lateral to the midbrain, forms via interactions between the neural tube and adjacent ectoderm. This induction triggers expression of Pax3, ingression of placode cells and their differentiation into neurons. However, the molecular nature of the underlying signals remains unknown. Here, we investigate the role of PDGF signaling in ophthalmic trigeminal placode induction. By in situ hybridization, PDGF receptor beta is expressed in the cranial ectoderm at the time of trigeminal placode formation, with the ligand PDGFD expressed in the midbrain neural folds. Blocking PDGF signaling in vitro results in a dose-dependent abrogation of Pax3 expression in recombinants of quail ectoderm with chick neural tube that recapitulate placode induction. In ovo microinjection of PDGF inhibitor causes a similar loss of Pax3 as well as the later placodal marker, CD151, and failure of neuronal differentiation. Conversely, microinjection of exogenous PDGFD increases the number of Pax3+ cells in the trigeminal placode and neurons in the condensing ganglia. Our results provide the first evidence for a signaling pathway involved in ophthalmic (opV) trigeminal placode induction.  相似文献   

6.
The present paper clarifies the initial development of the lateral line organs in the embryonic Japanese flounder, Paralichthys olivaceus. The first appearances of lateral line primordia, and the proliferation, distribution and morphological development of the free neuromasts, including nerve ending formation: establishment of hair cell innervations via the formation of synapses, were examined by light microscopy, scanning and transmission electron microscopy. The first pair of neuromast primordia appeared in the otic region ≈ 30 h prior to hatching and subsequently differentiated into free neuromasts, otic neuromasts, after ≈ 8 h. At hatching, a pair of free neuromasts and three pairs of neuromast primordia were present on the head, and three pairs of neuromast primordia were present on the trunk. The hair cell polarity of the otic neuromast until just prior to hatching was radial, but not bi‐directional. The typical afferent and efferent nerve endings in the otic neuromasts had formed by the time of hatching, suggesting that the otic neuromasts are functional prior to hatching. The three neuromast primordia located on each side of the trunk were derived from a long, narrow ectodermal cell cluster and erupted through the epidermis after hatching.  相似文献   

7.
8.
Defined fragments of the anterolateral neural ridge and of the associated region of the neural plate of presomitic to three-somite stage quail embryos were grafted isotopically and isochronically into chick hosts. This resulted in the development of apparently normal brain and facial structures to which the contribution of the grafted tissue could be observed by means of the quail nuclear marker. It was shown that the anterolateral neural ridge contains the progenitor cells of the adenohypophyseal and olfactory placodes and also of the superficial ectoderm lining the nasal cavity and conchae and the superficial ectoderm of the beak. When the appropriate region of the neural ridge was involved in the quail-chick substitution, the egg tooth was made up of graft-derived cells. Grafting of the neural plate area adjacent to the "ridge" territory containing the placodal ectoderm revealed that the presumptive region of the hypothalamus is in contiguity with that of the adenohypophyseal placode. The same observation was made for the olfactory placode and the floor of the telencephalon from which the olfactive bulb later develops.  相似文献   

9.
The inner ear and cochleovestibular ganglion (CVG) derive from a specialized region of head ectoderm termed the otic placode. During embryogenesis, the otic placode invaginates into the head to form the otic vesicle (OV), the primordium of the inner ear and CVG. Non-autonomous cell signaling from the hindbrain to the OV is required for inner ear morphogenesis and neurogenesis. In this study, we show that neuroepithelial cells (NECs), including neural crest cells (NCCs), can contribute directly to the OV from the neural tube. Using Wnt1-Cre, Pax3(Cre/+) and Hoxb1(Cre/+) mice to label and fate map cranial NEC lineages, we have demonstrated that cells from the neural tube incorporate into the otic epithelium after otic placode induction has occurred. Pax3(Cre/+) labeled a more extensive population of NEC derivatives in the OV than did Wnt1-Cre. NEC derivatives constitute a significant population of the OV and, moreover, are regionalized specifically to proneurosensory domains. Descendents of Pax3(Cre/+) and Wnt1-Cre labeled cells are localized within sensory epithelia of the saccule, utricle and cochlea throughout development and into adulthood, where they differentiate into hair cells and supporting cells. Some NEC derivatives give rise to neuroblasts in the OV and CVG, in addition to their known contribution to glial cells. This study defines a dual cellular origin of the inner ear from sensory placode ectoderm and NECs, and changes the current paradigm of inner ear neurosensory development.  相似文献   

10.
In order to determine the time window for induction of lateral line placodes in the axolotl, we performed two series of heterotopic and isochronic transplantations from pigmented to albino embryos at different stages of embryogenesis and assessed the distribution of pigmented neuromasts in the hosts at later stages. First, ectoderm from the prospective placodal region was transplanted to the belly between early neurula and mid tailbud stages (stages 13-27). Whereas grafts from early neurulae typically differentiated only into epidermis, grafts from late neural fold stages on reliably resulted in differentiation of ectopic pigmented neuromasts. Second, belly ectoderm was transplanted to the prospective placodal region between early neurula and tailbud stages (stages 13-35). Normal lateral lines containing pigmented neuromasts formed in most embryos when grafts were performed prior to early tailbud stages (stage 24) but not when they were performed later. Our findings indicate that lateral line placodes, from which neuromasts originate, are already determined at late neural fold stages (first series of grafts) but are inducible until early tailbud stages (second series of grafts). A further series of heterochronic transplantations demonstrated that the decline of inducibility at mid tailbud stages is mainly due to the loss of ectodermal competence.  相似文献   

11.
12.
The sense organs of the vertebrate head comprise structures as varied as the eye, inner ear, and olfactory epithelium. In the early embryo, these assorted structures share a common developmental origin within the preplacodal region and acquire specific characteristics only later. Here we demonstrate a fundamental similarity in placodal precursors: in the chick all are specified as lens prior to acquiring features of specific sensory or neurogenic placodes. Lens specification becomes progressively restricted in the head ectoderm, initially by FGF and subsequently by signals derived from migrating neural crest cells. We show that FGF8 from the anterior neural ridge is both necessary and sufficient to promote olfactory fate in adjacent ectoderm. Our results reveal that placode precursors share a common ground state as lens and progressive restriction allows the full range of placodal derivatives to form.  相似文献   

13.
Vertebrate craniofacial sensory organs derive from ectodermal placodes early in development. It has been suggested that all craniofacial placodes arise from a common ectodermal domain adjacent to the anterior neural plate, and a number of genes have been recently identified that mark such a 'pre-placodal' domain. However, the functional significance of this pre-placodal domain is still unclear. In the present study, we show that Fgf signaling is necessary and sufficient to directly induce some, but not all, markers of the otic placode in ectoderm taken from the pre-placodal domain. By contrast, ectoderm from outside this domain is not competent to express otic markers in response to Fgfs. Grafting na?ve ectoderm into the pre-placodal domain causes upregulation of pre-placodal markers within 8 hours, together with the acquisition of competence to respond to Fgf signaling. This suggests a two-step model of craniofacial placode induction in which ectoderm first acquires pre-placodal region identity, and subsequently differentiates into particular craniofacial placodes under the influence of local inducing signals.  相似文献   

14.
The chick ciliary ganglion is a neural crest-derived parasympathetic ganglion that innervates the eye. Here, we examine its axial level of origin and developmental relationship to other ganglia and nerves of the head. Using small, focal injections of DiI, we show that neural crest cells arising from both the caudal half of the midbrain and the rostral hindbrain contribute to the ciliary as well as the trigeminal ganglion. Precursors to both ganglia have overlapping migration patterns, moving first ventrolaterally and then rostrally toward the optic vesicle. At the level of the midbrain/forebrain junction, precursors to the ciliary ganglion separate from the main migratory stream, turn ventromedially, and condense in the vicinity of the rostral aorta and Rathke's pouch. Ciliary neuroblasts first exit the cell cycle at early E2, prior to and during ganglionic condensation, and neurogenesis continues through E5.5. By E3, markers of neuronal differentiation begin to appear in this population. By labeling the ectoderm with DiI, we discovered a new placode, caudal to the eye and possibly contiguous to the trigeminal placode, that contributes a few early differentiating neurons to the ciliary ganglion, oculomotor nerve, and connecting branches to the ophthalmic nerve. These results suggest for the first time a dual neural crest and placodal contribution to the ciliary ganglion and associated nerves.  相似文献   

15.
Previously, we found that interactions between neural and nonneural ectoderm can generate neural crest cells, with both the ectodermal and the neuroepithelial cells contributing to induced population (M. A. J. Selleck and M. Bronner-Fraser, 1995, Development 121, 525-538). To further characterize the ability of ectodermal cells to form neural crest, we have challenged their normal fate by transplanting them into the neural tube. To ensure that the ectoderm was from nonneural regions, we utilized extraembryonic ectoderm (the proamnion) and transplanted it into the presumptive midbrain of 1. 5-day-old chick embryos. We observed that the grafted ectoderm has the capacity to adopt a neural crest fate, responding within a few hours of surgery by turning on neural crest markers HNK-1 and Slug. However, the competence of the ectoderm to respond to neural crest-inducing signals is time limited, declining rapidly in donors older than the 10-somite stage. Similarly, the inductive capacity of the host midbrain declines in a time-dependent fashion. Our results show that extraembryonic ectoderm has the capacity to form neural crest cells given proper inducing signals, expressing both morphological and molecular markers characteristic of neural crest cells.  相似文献   

16.
17.
18.
Molecular anatomy of placode development in Xenopus laevis   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号