共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor (IGF) binding protein-5 blocks skeletal muscle differentiation by inhibiting IGF actions 总被引:3,自引:0,他引:3
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids. 相似文献
2.
The ovarian insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system operates to permit maximal stimulation of steroidogenesis in the dominant follicle. In atretic follicles, the predominant IGFBPs are IGFBP-2 and IGFBP-4, which appear to be selectively cleaved in healthy follicles. We have recently demonstrated potent inhibition by IGFBP-4 of both theca and granulosa cell steroid production. The degree to which the inhibition occurred suggested that it was greater than might be expected by sequestration of IGF alone. Our study was designed to test this idea. Granulosa cells were harvested from follicles dissected intact from patients undergoing total abdominal hysterectomy and bilateral salpingoophorectomy. Granulosa cells were incubated with or without gonadotropins and IGFBP-4 in the presence or absence of either the IGF type I receptor blocker alphaIR3 or excess IGFBP-3 to remove the effects of endogenous IGF action. Steroid accumulation in the medium was assessed. IGFBP-4 continued to exert potent inhibitory effects when the action of endogenous IGF was removed from the system, demonstrating that its actions are independent of IGF binding. There was no effect on cell metabolism, and the effects on steroidogenesis were reversible after IGFBP-4 removal from the culture medium. No similar effects were seen with IGFBP-2. These reasults are the first evidence of IGF-independent IGFBP-4 actions and the first evidence of IGF-independent actions of any IGFBPs in the ovary. 相似文献
3.
Forsten-Williams K Cassino TR Delo LJ Bellis AD Robinson AS Ryan TE 《Journal of cellular physiology》2007,210(2):298-308
The cellular microenvironment impacts how signals are transduced by cells and plays a key role in tissue homeostasis. Although pH is generally well regulated, there are a number of situations where acidosis occurs and our work addresses how low pH impacts cell association of insulin-like growth factor-I (IGF-I) in the presence of IGF binding protein-3 (IGFBP-3). We have previously shown that IGF-I cell binding was enhanced in the presence of IGFBP-3 at low pH and now show that this binding is IGFBP-mediated as it is inhibited by Y60L-IGF-I, a mutant with reduced affinity for the IGF receptor (IGF-IR), and unaffected by insulin, which binds but not IGFBPs. Using surface plasmon resonance (SPR), we show that direct binding between IGF-I and IGFBP-3 is pH sensitive. Despite this, the key step in the process appears to be IGFBP-3 cell surface association as Long-R(3)-IGF-I, a mutant with reduced affinity for IGFBPs, shows a similar increase in cell association at pH 5.8 in the presence of IGFBP-3 but does not exhibit pH-dependent binding by SPR. Further, analysis indicates a large increase in low-affinity binding sites for IGF-I in the presence of IGFBP-3 and an elimination of IGF-I enhanced binding when a non-cell associating mutant of IGFBP-3 is added in place of IGFBP-3. That the IGFBP-3-mediated binding localizes IGF-I away from IGF-IR is suggested by triton-solubility testing and indicates additional complexities to IGF-I regulation by IGFBP-3. Identifying the pH-dependent binding partner(s) for IGFBP-3 is a necessary next step in deciphering this process. 相似文献
4.
Insulin-like growth factors (IGF) in muscle development. Expression of IGF-I, the IGF-I receptor, and an IGF binding protein during myoblast differentiation 总被引:12,自引:0,他引:12
S E Tollefsen R Lajara R H McCusker D R Clemmons P Rotwein 《The Journal of biological chemistry》1989,264(23):13810-13817
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle. 相似文献
5.
While extracellular acidification within solid tumors is well-documented, how reduced pH impacts regulation of insulin-like growth factor-I (IGF-I) has not been studied extensively. Because IGF-I receptor binding is affected by IGF binding proteins (IGFBPs), we examined how pH impacted IGFBP-3 regulation of IGF-I. IGF-I binding in the absence of IGFBP-3 was diminished at reduced pH. Addition of IGFBP-3 reduced IGF-I cell binding at pH 7.4 but increased surface association at pH 5.8. This increase in IGF-I binding at pH 5.8 corresponded with an increase in IGFBP-3 cell association. This, however, was not due to an increase in affinity of IGFBP-3 for heparin at reduced pH although both heparinase III treatment and heparin addition reduced IGFBP-3 enhancement of IGF-I binding. An increase in IGF-I binding to IGFBP-3, though, was seen at reduced pH using a cell-free assay. We hypothesize that the enhanced binding of IGF-I at pH 5.8 is facilitated by increased association of IGFBP-3 at this pH and that the resulting cell associated IGF-I is IGFBP-3 and not IGF-IR bound. Increased internalization and nuclear association of IGF-I at pH 5.8 in the presence of IGFBP-3 was evident, yet cell proliferation was reduced by IGFBP-3 at both pH 5.8 and 7.4 indicating that IGFBP-3-cell associated IGF-I does not signal the cell to proliferate and that the resulting transfer of bound IGF-I from IGF-IR to IGFBP-3 results in diminished proliferation. Solution binding of IGF-I by IGFBP-3 is one means by which IGF-I-induced proliferation is inhibited. Our work suggests that an alternative pathway exists by which IGF-I and IGFBP-3 both associate with the cell surface and that this association inhibits IGF-I-induced proliferation. 相似文献
6.
Structural analogs of recombinant human insulin-like growth factor-I (IGF-I), with alterations to each of the B, C, A, and D domains, have been tested for their ability to form binary complexes with IGF-binding protein-3 (IGFBP-3) and ternary complexes with IGFBP-3 and the acid-labile subunit (alpha-subunit). Two functionally distinct regions of IGF-I have been identified. The first, involving residues 3 and 4 and the alpha-helix between residues 8 and 18 of the B-domain, as well as residues 49-51 in the A-domain, appears important for IGFBP-3 binding, such that substitution of these residues results in decreased binary complex available for alpha-subunit binding. The second region, distal to the IGFBP-3-binding epitope and primarily involving the D-domain and B-domain near residue 24, with some involvement of the C-domain, appears slightly inhibitory to binary complex formation, such that analogs with a truncated D-domain or with a Gly4 bridge substituted for the C-domain show enhanced binding to IGFBP-3. However, binary complexes formed from these analogs bind the alpha-subunit with reduced affinity, the effect being most marked when substitution of the C-domain, or replacement of Tyr24, is superimposed on D-domain truncation. It is concluded that although the alpha-subunit does not itself bind IGF-I, its interaction with IGFBP-3 in the ternary complex is dependent on structural determinants on IGF-I distal to the IGFBP-3 binding domain. 相似文献
7.
Giovannucci E 《Hormone research》1999,51(Z3):34-41
Insulin-like growth factor (IGF)-I is an important mitogen required by some cell types to progress from the G1 phase to the S phase of the cell cycle. IGF binding proteins (IGFBPs) can have opposing actions, in part by binding IGF-I, but also by direct inhibitory effects on target cells. As mitogens and anti-apoptotic agents, IGFs may be important in carcinogenesis, possibly by increasing the risk of cellular transformation by enhancing cell turnover. Indeed, many types of neoplastic cells express or overexpress IGF-I receptors, which stimulate mitogenesis when activated by IGF-I in vitro. In vivo, tissue IGF bioactivity is determined not only by circulating IGF-I and IGFBP levels, but also by local production of IGFs, IGFBPs, and possibly IGFBP proteases that enhance IGF-I availability by cleaving IGFBPs. Because determinants of tissue IGF bioactivity appear to be regulated in parallel with circulating IGF-I level, it is reasonable to hypothesize that the substantial intraindividual variability in circulating levels of IGF-I and IGFBP-3 may be important in determining risk of some cancers. In recent epidemiologic studies, relatively high plasma IGF-I and low IGFBP-3 levels have been independently associated with greater risk of prostate cancer in men, breast cancer among premenopausal women, and colorectal adenoma and cancer in men and women and possibly lung cancer. These include prospective data from the Physicians' Health Study and the Nurses' Health Study. In general, two- to fourfold elevated risks have been observed for prostate cancer in men in the top quartile of IGF-I relative to those in the bottom quartile, and low levels of IGFBP-3 were associated with an approximate doubling of risk. For breast cancer, an association with IGF-I for postmenopausal women was not apparent, but strong associations were observed for premenopausal cases in the Nurses' Health Study. Further study is needed to confirm this subgroup finding in women. Recent data also indicate that high IGF-I and low IGFBP-3 increase risk of colorectal cancer and large or villous adenomas. Of note, for colorectal neoplasia, fourfold elevated risks were observed in men and women with low IGFBP-3, whereas high IGF-I was associated with a doubling of risk. These emerging epidemiologic data indicate that high levels of IGF-I and low levels of IGFBP-3 are associated with an increased risk of at least several types of carcinoma that are common in economically developed countries. Further study is required to determine the clinical relevance of these findings. 相似文献
8.
IGF-I is mitogenic for the bovine mammary epithelial cell line MAC-T. In addition, IGF-I specifically upregulates IGFBP-3 synthesis in these cells. To investigate this effect on cell growth and IGF-I responsiveness, cell lines were developed that constitutively express IGFBP-3. MAC-T cells transfected with IGFBP-3 (+BP3) or vector alone (Mock) grew similarly over 7 days in 10 or 1% fetal calf serum. Basal DNA synthesis was lower (70%) in +BP3 cells compared to Mock cells. However, DNA synthesis was increased by IGF-I (1-50 ng/ml) relative to untreated controls to a greater extent in +BP3 cells compared to Mock cells. IGF-I (20 ng/ml) increased DNA synthesis 11- and threefold in +BP3 and Mock cells, respectively. Additionally, +BP3 cells were more sensitive to the lower concentrations of IGF-I (1-5 ng/ml). In contrast, preincubation of Mock cells with exogenous IGFBP-3 did not enhance responsiveness or sensitivity to IGF-I. Basal DNA synthesis was unaffected by either an IGF neutralizing antibody or exogenous IGFBP3, indicating the differences observed between +BP3 and Mock cells were not attributable to sequestration of endogenous IGF-I by IGFBP-3. There were no differences between +BP3 and Mock cells in IGF-I receptor number or affinity. DNA synthesis was also increased in +BP3 cells, compared to controls, in response to 5 microg/ml insulin and 2.5 ng/ml Long R(3)IGF-I, indicating that the potentiated response did not require an interaction with IGFBP-3. These results suggest that IGF-I regulation of IGFBP-3 represents a regulatory loop, the function of which is to increase IGF-I bioactivity, using a mechanism that does require an IGF-I-IGFBP-3 interaction. 相似文献
9.
Wilczak N Kühl N Chesik D Geerts A Luiten P De Keyser J 《Journal of neurochemistry》2002,82(2):430-438
The binding characteristics of [(125) I]insulin-like growth factor (IGF)-I were studied in human brain and pituitary gland. Competition binding studies with DES(1-3)IGF-I and R(3) -IGF-I, which display high affinity for the IGF-I receptor and low affinity for IGF binding proteins (IGFBPs), were performed to distinguish [(125) I]IGF-I binding to IGF-I receptors and IGFBPs. Specific [(125) I]IGF-I binding in brain regions and the posterior pituitary was completely displaced by DES(1-3)IGF-I and R(3) -IGF-I, indicating binding to IGF-I receptors. In contrast, [(125) I]IGF-I binding in the anterior pituitary was not displaced by DES(1-3)IGF-I and R(3) -IGF-I, suggesting binding to an IGF-binding site that is different from the IGF-I receptor. Binding affinity of IGF-I to this site was about 10-fold lower than for the IGF-I receptor. Using western immunoblotting we were also unable to detect IGF-I receptors in human anterior pituitary. Instead, western immunoblotting and immunoprecipitation experiments showed a 150-kDa IGFBP-3-acid labile subunit (ALS) complex in the anterior pituitary and not in the posterior pituitary and other brain regions. RT-PCR experiments showed the expression of ALS mRNA in human anterior pituitary indicating that the anterior pituitary synthesizes ALS. In the brain regions and posterior pituitary, IGFBP-3 was easily washed away during pre-incubation procedures as used in the [(125) I]IGF-I binding experiments. In contrast, the IGFBP-3 complex in the anterior pituitary could not be removed by these washing procedures. Our results indicate that the human anterior pituitary contains a not previously described tightly cell membrane-bound 150-kDa IGFBP-3-ALS complex that is absent in brain and posterior pituitary. 相似文献
10.
11.
Insulin-like growth factor (IGF) binding protein-4 is both a positive and negative regulator of IGF activity in vivo 总被引:1,自引:0,他引:1
Ning Y Schuller AG Conover CA Pintar JE 《Molecular endocrinology (Baltimore, Md.)》2008,22(5):1213-1225
IGFs are required for normal prenatal and postnatal growth. Although actions of IGFs can be modulated by a family of IGF-binding proteins (IGFBPs) in vitro, these studies have identified a complicated pattern of stimulatory and inhibitory IGFBP effects, so that understanding relevant aspects of IGFBP action in vivo has been limited. Here we have produced a null mutation of one specific IGFBP, IGFBP-4, which is coexpressed with IGF-II early in development. Surprisingly, mutation of IGFBP-4, believed from in vitro studies to be exclusively inhibitory, leads to a prenatal growth deficit that is apparent from the time that the IGF-II growth deficit first arises, which strongly suggests that IGFBP-4 is required for optimal IGF-II-promoted growth during fetal development. Mice encoding a mutant IGFBP-4 protease (pregnancy-associated plasma protein-A), which facilitates IGF-II release from an inactive IGF-II/IGFBP-4 complex in vitro, are even smaller than IGFBP-4 mutant mice. However, the more modest IGFBP-4 growth deficit is completely restored in double IGFBP-4/pregnancy-associated plasma protein-A-deficient mice. Taken together these results indicate not only that IGFBP-4 functions as a local reservoir to optimize IGF-II actions needed for normal embryogenesis, but also establish that IGFBP-4 proteolysis is required to activate most, if not all, IGF-II mediated growth-promoting activity. 相似文献
12.
Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis 总被引:1,自引:0,他引:1
The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells. 相似文献
13.
Insulin-like growth factor-I (IGF-I) is produced within the porcine corpus luteum (CL) and is thought to play an autocrine/paracrine role in CL development/function during the early luteal phase. This study examines the hypotheses that the luteolytic actions of prostaglandin F(2alpha) (PGF(2alpha)) during the early luteal phase may involve either a decrease in IGF-I or IGF receptor (IGF-IR), or an increase in IGF binding protein (IGFBP)-3, expression, any of which could interfere with the luteotropic actions of IGF-I in this tissue. Cycling gilts were treated twice daily with PGF(2alpha) (or saline) on Days 5-9 of the cycle to induce premature luteolysis. CL were collected on Days 6-9, and RNA, protein, or progesterone was extracted. By slot blot analysis, steady-state levels of IGF-I and IGFBP-3 mRNA were not different in PGF(2alpha)-treated vs. control animals; however, IGF-IR mRNA was increased in treated animals on Day 9. No changes in IGF-I content (ng/CL measured by RIA) were observed with respect to treatment. According to ligand blot analysis, the levels of IGFBP-3 increased on Day 6 and decreased on Days 8-9, while IGFBP-2 was higher on Days 6-7 and decreased on Day 9 in treated animals. IGF-IR levels, determined from Western blots, were higher on Day 7 (P < 0.05) and lower on Day 9 in PGF(2alpha)-treated animals vs. control animals (P < 0.05). In conclusion, PGF(2alpha)-induced premature luteolysis was associated with an increase in steady-state levels of IGF-IR mRNA, but it did not appear to be linked to changes in mRNA levels for IGF-I or IGFBP-3. However, since IGFBP-2 and -3 protein levels increased early in the treatment period (Days 6-7), it is possible that they may mediate the luteolytic actions of PGF(2alpha) by sequestering IGF-I and preventing its interaction with the IGF-IR. 相似文献
14.
Insulin-like growth factor binding protein-5 (IGFBP-5) interacts with thrombospondin-1 to induce negative regulatory effects on IGF-I actions 总被引:2,自引:0,他引:2
Moralez AM Maile LA Clarke J Busby WH Clemmons DR 《Journal of cellular physiology》2005,203(2):328-334
Insulin-like growth factor binding protein-5 (IGFBP-5) and thrombospondin-1 (TS-1) are both present in extracellular matrix (ECM). Both proteins have been shown to bind to one another with high affinity. The purpose of these studies was to determine how the interaction between IGFBP-5 and TS-1 modulates IGF-I actions in porcine aortic smooth muscle cells (pSMC) in culture. The addition of increasing concentrations of TS-1 to pSMC cultures enhanced the protein synthesis and cell migration responses to IGF-I; whereas the addition of IGFBP-5 alone resulted in minimal changes. In contrast, the addition of IGFBP-5 to cultures that were also exposed to IGF-I and TS-1 resulted in inhibition of protein synthesis. When the cell migration response was assessed, the response to IGF-I plus TS-1 was also significantly inhibited by the addition of IGFBP-5, whereas 1.0 microg/ml of IGFBP-5 alone had no effect on the response to IGF-I.To determine the molecular mechanism by which this inhibition occurred, a mutant form of IGFBP-5 that does not bind to IGF-I was tested. This mutant was equipotent compared to native IGFBP-5 in its ability to inhibit both protein synthesis and cell migration responses to IGF-I plus TS-1 thus excluding the possibility that IGFBP-5 was inhibiting the response to TS-1 and IGF-I by inhibiting IGF-I binding to the IGF-I receptor. To determine if an interaction between TS-1 and IGFBP-5 was the primary determinant of the inhibitory effect of IGFBP-5, an IGFBP-5 mutant that bound poorly to TS-1 was utilized. The addition of 1.0 microg/ml of this mutant did not inhibit the protein synthesis or cell migration responses to IGF-I plus TS-1. To determine the mechanism by which IGFBP-5 binding to TS-1 inhibited cellular responses to TS-1 plus IGF-I, TS-1 binding to integrin associated protein (IAP) was assessed. The addition of IGFBP-5 (1.0 microg/ml) inhibited TS-1-IAP association. In contrast, a mutant form of IGFBP-5 that bound poorly to TS-1 had a minimal effect on TS-1 binding to IAP. Further analysis showed that IGFBP-5 addition altered the ability of TS-1 to modulate the SHPS-1/IAP interaction. When the IGFBP-5 mutant that did not bind to IGF-I was incubated with TS-1 and IGF-I, it inhibited the capacity of TS-1 to enhance the IGF-I receptor phosphorylation and MAP kinase activation in response to IGF-I. In contrast, the IGFBP-5 mutant that did not bind to TS-1 had no effect on IGF-I stimulated IGF-I receptor phosphorylation or MAP kinase activation. These results indicate that IGFBP-5 inhibits the binding of TS-1 to IAP, and this results in an alteration of the ability of TS-1 to modulate the disruption of the IAP/SHPS-1 interaction which leads to attenuation of the ability of TS-1 to enhance cellular responsiveness to IGF-I. 相似文献
15.
Both neurons and glia succumb to programmed cell death (PCD) when deprived of growth factors at critical periods in development or following injury. Insulin-like growth factor-I (IGF-I) prevents apoptosis in neurons in vitro. To investigate whether IGF-I can protect Schwann cells (SC) from apoptosis, SC were harvested from postnatal day 3 rats and maintained in serum-containing media until confluency. When cells were switched to serum-free defined media (DM) for 12-72 h, they underwent PCD. Addition of insulin or IGF-I prevented apoptosis. Bisbenzamide staining revealed nuclear condensation and formation of apoptotic bodies in SC grown in DM alone, but SC grown in DM plus IGF-I had normal nuclear morphology. The phosphatidylinositol 3-kinase (PI 3-K) inhibitor LY294002 blocked IGF-I-mediated protection. Caspase-3 activity was rapidly activated upon serum withdrawal in SC, and the caspase inhibitor BAF blocked apoptosis. These results suggest that IGF-I rescues SC from apoptosis via PI 3-K signaling which is upstream from caspase activation. 相似文献
16.
17.
Insulin-like growth factor-I (IGF-I) plays an important role in proliferation of vascular smooth muscle cells (VSMCs). However, the mechanism that IGF-I induces VSMCs proliferation is not completely understood. In this study, we determined (a) whether and how IGF-I induces transactivation of epidermal growth factor receptor (EGFR) in primary rat aortic VSMCs, (b) the contribution of EGFR to IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK) and cell proliferation, and (c) the role of reactive oxygen species (ROS) in the cellular function. We showed that IGF-I induced phosphorylation of EGFR and ERK1/2 in VSMCs. AG1478, an EGFR inhibitor, inhibited IGF-I-induced phoshorylation of EGFR and ERK1/2. IGF-I stimulated ROS production and Src activation. Antioxidants inhibited IGF-I-induced ROS generation and activation of EGFR, ERK, and Src. Src kinase inhibitor PP1 and Src siRNA blocked IGF-I-induced activation of EGFR and ERK1/2. Inhibition of IGF-I-stimulated EGFR activation inhibited IGF-I-induced VSMC proliferation. These results suggest that (1) IGF-I induces EGFR activation through production of ROS and ROS-mediated Src activation in VSMCs, and (2) EGFR transactivation is required for IGF-I-induced VSMC proliferation. 相似文献
18.
H Yamasaki D Prager S Gebremedhin S Melmed 《Molecular endocrinology (Baltimore, Md.)》1991,5(7):890-896
Insulin-like growth factor-I (IGF-I) attenuates GH gene expression by a receptor-mediated mechanism in pituitary cells. We, therefore, isolated neomycin-resistant stable GC cell transfectants over-expressing human IGF-I receptor cDNA (IGFIR-cDNA) cloned in an Rous sarcoma virus-directed expression vector. A transfection control contained the IGFIR-cDNA cloned in the reverse orientation. Southern analysis confirmed incorporation of human IGFIR-cDNA sequences into rat genomic DNA. Immunoprecipitation of metabolically labeled [35S]methionine stably transfected cells revealed a 200-kDa human IGF-I receptor precursor protein. Growth rate and basal GH secretion were not altered in transfected cells. Although transfected and control cells had a similar Kd for IGF-I binding (0.43 and 0.40 nM, respectively), IGF-I-binding sites were induced 17-fold (384,000 vs. 22,000 sites/cell). Treatment of cells with IGF-I (6.5 nM) maximally attenuated GH secretion by 80% compared to 40% attenuation in control cells (P less than 0.0001). Maximal suppression of GH in transfectants occurred within 15 h of treatment, and GH secretion by control cells was only maximally suppressed after 42 h. The ED50 of IGF-I suppression of GH secretion in transfectants after 15 h was 0.5 nM. These results demonstrate that transfectants overexpressing human IGF-I receptor are hyperresponsive to exogenous IGF-I. These data indicate that IGF-I receptor number plays an important role in mediating the signal transduction of IGF-I to the GH gene. 相似文献
19.
Yang F Johnson BJ White ME Hathaway MR Dayton WR 《Journal of cellular physiology》1999,178(2):227-234
Insulin-like growth factor binding protein (IGFBP)-3 effects proliferation and differentiation of numerous cell types by binding to insulin-like growth factors (IGF) and attenuating their activity or by directly affecting cells in an IGF-independent manner. Consequently, IGFBPs produced by specific cells may affect their differentiation and proliferation. In this study we show that embryonic porcine myogenic cells, unlike murine muscle cell lines, produce significant quantities of a binding protein immunologically identified as IGFBP-3. Nonfusing cells subcultured from highly fused porcine myogenic cell cultures do not produce detectable IGFBP-3 protein or mRNA, thus suggesting the IGFBP-3 is produced by muscle cells in the porcine myogenic cell cultures. Treatment of porcine myogenic cultures with 20 ng of IGF-I or 20 ng of Des (1-3) IGF-I/ml serum-free media for 24 h results in a threefold reduction in the level of IGFBP-3 in conditioned media. This reduction is not affected by cell density over a sixfold range. Additionally, treatment for 24 h with 20 ng of IGF-I/ml media results in a sevenfold decrease in the steady-state level of IGFBP-3 mRNA. This IGF-I-induced decrease in IGFBP-3 mRNA level appears to be relatively unique to myogenic cells. IGF-I treatment also causes a fourfold increase in the steady-state level of myogenin mRNA. This increase in myogenin mRNA suggests that, as expected, IGF-I treatment accelerates differentiation of myogenic cells. The simultaneous decrease in IGFBP-3 mRNA and protein that accompanies IGF-I-induced myogenin expression suggests that differentiation of myogenic cells may be preceded or accompanied by decreased production of IGFBP-3. 相似文献
20.
Insulin-like growth factor-I (IGF-I) protects cultured equine Leydig cells from undergoing apoptosis
Leydig cells located in the interstitial space of the testicular parenchyma produce testosterone which plays a critical role in the maintenance and restoration of spermatogenesis in many species, including horses. For normal spermatogenesis, maintaining Leydig cells is critical to provide an optimal and constant level of testosterone. Recently, an anti-apoptotic effect of IGF-I in testicular cells in rats has been reported, but a similar effect of IGF-I on equine Leydig cells remains to be elucidated. If IGF-I also protects stallion testicular cells from undergoing apoptosis, then IGF-I may have potential as a treatment regime to prevent testicular degeneration. The present study was designed to evaluate the anti-apoptotic effect of IGF-I on cultured equine Leydig cells. Testes were collected from 5 post-pubertal stallions (2-4 years old) during routine castrations. A highly purified preparation of equine Leydig cells was obtained from a discontinuous Percoll gradient. Purity of equine Leydig cells was assessed using histochemical 3β-HSD staining. Equine Leydig cells and selected doses of recombinant human IGF-1 (rhIGF-I; Parlow A.F., National Hormone and Peptide Program, Harbor-UCLA Medical Center) were added to wells of 24 or 96 well culture plates in triplicate and cultured for 24 or 48 h under 95% air:5% CO(2) at 34°C. After 24 or 48 h incubation, apoptotic rate was assessed using a Cell Death Detection ELISA kit. Significantly lower apoptotic rates were observed in equine Leydig cells cultured with 5, 10, or 50ng/ml of rhIGF-I compared with control cells cultured without rhIGF-I for 24h. Exposure to 1, 5, 10 or 50 ng/ml of rhIGF-I significantly decreased apoptotic rate in equine Leydig cells cultured for 48 h. After 48 h incubation, cells were labeled with Annexin V and propodium iodine to determine the populations of healthy, apoptotic, and necrotic cells by counting stained cells using a Nikon Eclipse inverted fluorescence microscope. As a percentage of the total cells counted, significantly lower numbers of apoptotic cells were observed in cells treated with 10 (9%) or 50 ng/ml (10%) of rhIGF-I compared with cells cultured without rhIGF-I (control, 22%). In this study, the results from the two assays indicated that rhIGF-I protected equine Leydig cells from undergoing apoptosis during cell culture for 24h or 48 h. In conclusion, IGF-I may be an important paracrine/autocrine factor in protecting equine Leydig cells from undergoing apoptosis. 相似文献