首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was considered a classical glycolytic protein examined for its pivotal role in energy production. It was also used as a model protein for analysis of protein structure and enzyme mechanisms. The GAPDH gene was utilized as a prototype for studies of genetic organization, expression and regulation. However, recent evidence demonstrates that mammalian GAPDH displays a number of diverse activities unrelated to its glycolytic function. These include its role in membrane fusion, microtubule bundling, phosphotransferase activity, nuclear RNA export, DNA replication and DNA repair. These new activities may be related to the subcellular localization and oligomeric structure of GAPDH in vivo. Furthermore, other investigations suggest that GAPDH is involved in apoptosis, age-related neurodegenerative disease, prostate cancer and viral pathogenesis. Intriguingly, GAPDH is also a unique target of nitric oxide. This review discusses the functional diversity of GAPDH in relation to its protein structure. The mechanisms through which mammalian cells may utilize GAPDH amino acid sequences to provide these new functions and to determine its intracellular localization are considered. The interrelationship between new GAPDH activities and its role in cell pathologies is addressed.  相似文献   

2.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein with diverse biological functions in human cells. In bacteria, moonlighting GAPDH functions have only been described for the secreted protein in pathogens or probiotics. At the intracellular level, we previously reported the interaction of Escherichia coli GAPDH with phosphoglycolate phosphatase, a protein involved in the metabolism of the DNA repair product 2-phosphoglycolate, thus suggesting a putative role of GAPDH in DNA repair processes. Here, we provide evidence that GAPDH is required for the efficient repair of DNA lesions in E. coli. We show that GAPDH-deficient cells are more sensitive to bleomycin or methyl methanesulfonate. In cells challenged with these genotoxic agents, GAPDH deficiency results in reduced cell viability and filamentous growth. In addition, the gapA knockout mutant accumulates a higher number of spontaneous abasic sites and displays higher spontaneous mutation frequencies than the parental strain. Pull-down experiments in different genetic backgrounds show interaction between GAPDH and enzymes of the base excision repair pathway, namely the AP-endonuclease Endo IV and uracil DNA glycosylase. This finding suggests that GAPDH is a component of a protein complex dedicated to the maintenance of genomic DNA integrity. Our results also show interaction of GAPDH with the single-stranded DNA binding protein. This interaction may recruit GAPDH to the repair sites and implicates GAPDH in DNA repair pathways activated by profuse DNA damage, such as homologous recombination or the SOS response.  相似文献   

3.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-studied glycolytic protein with energy production as its implied occupation. It has established itself lately as a multifunctional protein. Recent studies have found GAPDH to be involved in a variety of nuclear and cytosolic pathways ranging from its role in apoptosis and regulation of gene expression to its involvement in regulation of Ca2+ influx from endoplasmic reticulum. Numerous studies also indicate that GAPDH interacts with microtubules and participates in cell membrane fusion. This review is focused on the cytosolic functions of the protein related to vesicular transport. Suggestions for future directions as well as the model of protein polymer structure and possible post-translational modifications as a basis for its multifunctional activities in the early secretory pathway are given.  相似文献   

4.
5.
6.
Overexpression and subsequent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is involved in neuronal apoptosis induced by several stimuli in which GAPDH antisense oligonucleotides specifically block the increment (2 approximately 3 fold) of GAPDH mRNA contents occurring prior to neuronal death. However, these agents do not affect the basal, constitutive mRNA contents. This suggests that there may be distinct gene regulations for GAPDH mRNA expression. Herein, we cloned two types of promoter regions upstream of this gene; viz., #104 (1.02-kb) and #302 (2.46-kb). These fragments were inserted into the pGL3 luciferase reporter system and transiently transfected into cultured cerebellar neurons undergoing cytosine arabinonucleoside-induced apoptosis. The functional analysis of these constructs revealed that #104, but not #302, increased luciferase activity in response to the apoptotic stimulus. Deletion and replacement mutation analysis of the #104 fragment disclosed the promoter core harbored between the 154-bp and 84-bp domains (3.5-fold activity of the control). Furthermore, anti-dementia drugs (such as Cognex and Aricept) markedly depress the expression of this pro-apoptotic GAPDH promoter activity. Interestingly, immunocytochemical examination of human post-mortem materials from patients with Alzheimer's disease revealed nuclear aggregated GAPDH in neurons of the affected brain regions, implying an association with apoptotic cell death. The current findings indicate that induction of the pro-apoptotic protein GAPDH is genetically regulated at the level of promoter activation, and this protein may be an important molecular target for developing anti-apoptotic therapeutic agents in certain neurological illnesses.  相似文献   

7.
植物3-磷酸甘油醛脱氢酶的多维本质   总被引:4,自引:1,他引:3  
3-磷酸甘油醛脱氢酶(GAPDH)作为一种糖酵解蛋白在糖酵解的能量产生中发挥着重要作用。它通常作为一种模式蛋白用于蛋白和酶的分析,也可以用作研究基因表达量的内在对照。然而,最近的相关研究表明,真核及原核生物的3-磷酸甘油醛脱氢酶实际上存在着一种多维本质,研究证明它在DNA修复、细胞凋亡、核RNA输出、及其在细胞周期中都发挥着重要的作用。尽管该酶在植物中的研究不如在哺乳动物中的深入,但研究已经陆续证明,3-磷酸甘油醛脱氢酶在植物中同样具有许多未被发现的功能,目前已经报道该酶在厌氧、热激、伤害以及能量供应中可能发挥着重要作用。本文旨在就国内外对于该酶在植物中的研究作一总结论述,以期推进科学界对它的更深入认识和研究。  相似文献   

8.
Abstract: Under typical culture conditions, cerebellar granule cells die abruptly after 17 days in vitro. This burst of neuronal death involves ultrastructural changes and internucleosomal DNA fragmentations characteristic of apoptosis and is effectively arrested by pretreatment with actinomycin-D and cycloheximide. The level of a 38-kDa protein in the particulate fraction is markedly increased during age-induced cell death and by pretreatment with NMDA, which potentiates this cell death. Conversely, the age-induced increment of the 38-kDa particulate protein is suppressed by actinomycin-D and cycloheximide. N-terminal microsequencing of the 38-kDa protein revealed sequence identity with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). A GAPDH antisense oligodeoxyribonucleotide blocks age-induced expression of the particulate 38-kDa protein and effectively inhibits neuronal apoptosis. In contrast, the corresponding sense oligonucleotide of GAPDH was completely ineffective in preventing the age-induced neuronal death and the 38-kDa protein overexpression. Moreover, the age-induced expression of the 38-kDa protein is preceded by a pronounced increase in the GAPDH mRNA level, which is abolished by actinomycin-D, cycloheximide, or the GAPDH antisense, but not sense, oligonucleotide. Thus, our results suggest that overexpression of GAPDH in the particulate fraction has a direct role in age-induced apoptosis of cerebellar neurons.  相似文献   

9.
10.
Xie W  Shao N  Ma X  Ling B  Wei Y  Ding Q  Yang G  Liu N  Wang H  Chen K 《Life sciences》2006,79(19):1820-1827
Bacterial endotoxin or lipopolysaccharide (LPS) can trigger inflammatory responses and cause damage in organs such as liver and lungs when it is introduced into mammals, but the exact molecular events that mediate these responses have remained obscure. In this study, by using 2D gel electrophoresis and cDNA microarray analysis, we found that both protein and mRNA levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were significantly increased in rat liver and lungs after treatment with LPS. The results were further confirmed by Western blot and Northern blot. Given the known role of GAPDH in inducing apoptosis, our results suggest that LPS-induced GAPDH up-regulation may be an important mechanism responsible for the damage induced by Gram negative bacteria in mammalian tissue and GAPDH may be involved in the signaling pathway of LPS induced apoptosis. Our results also demonstrate that GAPDH is not a suitable internal control in gene expression studies, especially when bacterial infection is involved.  相似文献   

11.
To investigate the effect of hyper-pressure on retinal ganglion cells (RGC-5), RGC-5 cells were exposed to an ambient hydrostatic pressure of 100 mmHg. Upon treatment, the proliferation of RGC-5 cells was inhibited and neuronal apoptosis was detected by specific apoptosis marker TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling). To probe into the mechanism mediating the apoptosis of RGC-5 cells in 100 mmHg, protein profile alterations following hyper-pressure treatment were examined using two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF. Out of the 400 protein spots of RGC-5 cells detected on 2-DE gels, 37 differentially expressed protein spots were further identified using in gel tryptic digestion and mass spectrometry. Among these proteins, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was significantly expressed 10 times more in 100 mmHg than in normal pressure. The accumulation of GAPDH in the nucleus and its translocation from the cytosol to the nucleus in 100 mmHg were observed using a microscope. These results suggest that the hyper-pressure-induced apoptosis in RGC-5 cells may be involved with not only the increase of GAPDH expression, but also the accumulation and the translocalization of GAPDH to the nucleus.  相似文献   

12.
New functions have been identified for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) including its role in neurodegenerative disease and in apoptosis. GAPDH binds specifically to proteins implicated in the pathogenesis of a variety of neurodegenerative disorders including the beta-amyloid precursor protein and the huntingtin protein. However, the pathophysiological significance of such interactions is unknown. In accordance with published data, our initial results indicated there was no measurable difference in GAPDH glycolytic activity in crude whole-cell sonicates of Alzheimer's and Huntington's disease fibroblasts. However, subcellular-specific GAPDH-protein interactions resulting in diminution of GAPDH glycolytic activity may be disrupted or masked in whole-cell preparations. For that reason, we examined GAPDH glycolytic activity as well as GAPDH-protein distribution as a function of its subcellular localization in 12 separate cell strains. We now report evidence of an impairment of GAPDH glycolytic function in Alzheimer's and Huntington's disease subcellular fractions despite unchanged gene expression. In the postnuclear fraction, GAPDH was 27% less glycolytically active in Alzheimer's cells as compared with age-matched controls. In the nuclear fraction, deficits of 27% and 33% in GAPDH function were observed in Alzheimer's and Huntington's disease, respectively. This evidence supports a functional role for GAPDH in neurodegenerative diseases. The possibility is considered that GAPDH:neuronal protein interaction may affect its functional diversity including energy production and as well as its role in apoptosis.  相似文献   

13.
Abstract

Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibits multiple functions separate and distinct from its historic role in energy production. Further, it exhibits dynamic changes in its subcellular localization which is an a priori requirement for its multiple activities. Separately, moonlighting GAPDH may function in the pathology of human disease, involved in tumorigenesis, diabetes, and age-related neurodegenerative disorders. It is suggested that moonlighting GAPDH function may be related to specific modifications of its protein structure as well as the formation of GAPDH protein: protein or GAPDH protein: nucleic acid complexes.  相似文献   

14.
15.
The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA‐developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real‐time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition‐induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity‐induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell‐cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro‐apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. J. Cell. Biochem. 107: 723–731, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5''-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular TTRAPE152A, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis. [BMB Reports 2013; 46(2): 113-118]  相似文献   

17.
Lymphoblastoid cell lines (LCLs) are nearly immortalized B lymphocytes that are used as long-lasting supply of human cells for studies on gene expression analyses. However, studies on the stability of the cellular features of LCLs are scarce. To address this issue, we measured gene expression in LCLs with different passage numbers and observed that gene expression substantially changed within 10 passages. In particular, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a well-known housekeeping gene, varied considerably during subculture; thus, the use GAPDH as an internal control may be unsuitable. In conclusion, this study highlights the need for exercising caution during determination of gene expression in LCLs.  相似文献   

18.
SPARC(Secreted Protein Acidic and Rich in Cysteine)蛋白是一种富含半胱氨酸(Cys)的酸性分泌蛋白,参与细胞增殖、迁移、凋亡及肿瘤血管生成等生物学过程。前期研究表明,DNA甲基化在胰腺癌中广泛地存在,其可能是胰腺癌等消化道恶性肿瘤中富含半胱氨酸的酸性分泌蛋白(SPARC)表达下调的机制之一。DNA甲基化通常导致某些抑瘤基因的高甲基化失活,SPARC基因是一种抑瘤基因,甲基化能够使其功能性的失活。而通过抑制DNA甲基化可以恢复SPARC的表达,DNA甲基化有望成为胰腺癌早期诊断的潜在生物学标记物以及治疗的靶点。因此,本文主要就SPARC的DNA甲基化在胰腺癌发生发展中的最新研究进展作一综述。  相似文献   

19.
Glyceraldehyde‐3‐phosphate dehydrogenase, is one of the most investigated housekeeping genes and widely used as an internal control in analysis of gene expression levels. The present study was designed to assess whether GAPDH is associated with cancer cell growth and progression and, therefore may not be a good internal control in cancer research. Our results from clinical tissue studies showed that the levels of GAPDH protein were significantly up‐regulated in lung squamous cell carcinoma tissues, compared with the adjacent normal lung tissues, and this was confirmed by western blotting and immunohistochemistry. GAPDH knockdown by siRNA resulted in significant reductions in proliferation, migration, and invasion of lung squamous carcinoma cells in vitro. In a nude mouse cancer xenograft model, GAPDH knockdown significantly inhibited the cell proliferation and migration/invasion in vivo. In summary, GAPDH may not be an appropriate internal control for gene expression studies, especially in cancer research. The role of GAPDH in cancer development and progression should be further examined in pre‐clinical and clinical studies.  相似文献   

20.
p53 protein is probably the best known tumor suppressor. Earlier reports proved that human breast cancer cells expressing mutant p53 displayed resistance to apoptosis. This study is intended to investigate, the potential applications of RNA interference (RNAi) to block p53 expression, as well as its subsequent effect on cell growth, apoptosis and migration on a triple negative human breast cancer cell line (Hs578T). p53siRNA significantly reduced cell index (CI) compared to the control and we observed an inhibition of cellular migration in the interval of time between 0 and 30 h, as shown in the data obtained by dynamic evaluation using the xCELLigence System. Also, by using PCR-array technology, a panel of 84 key genes involved in apoptosis was investigated. Our studies indicate that the knockdown of p53 expression by siRNA modulates several genes involved in cell death pathways and apoptosis, showing statistically significant gene expression differences for 22 genes, from which 18 were upregulated and 4 were downregulated. The present research also emphasizes the important role of BCL-2 pro-apoptotic family of genes (Bim, Bak, and Bax) in activating apoptosis and reducing cell proliferation by p53siRNA treatment. Death receptors cooperate with BCL-2 pro-apoptotic genes in reducing cell proliferation. The limited success may be due to the activation of the antiapoptotic gene Mcl-1, and it may be associated with the resistance of triple negative breast cancer cells to cancer treatment. Thus, targeting p53siRNA pathways using siRNA may serve as a promising therapeutic strategy for the treatment of breast cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号