首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of in vivo and in vitro experiments were conducted to determine the influence of prenatally administered ethanol on several aspects of the developing chick embryo spinal cord motor system. Specifically, we examined: (1) the effect of chronic ethanol administration during the natural cell death period on spinal cord motoneuron numbers; (2) the influence of ethanol on ongoing embryonic motility; (3) the effect of ethanol exposure on neurotrophic activity in motoneuron target tissue (limbbud); and (4) the responsiveness of cultured spinal cord neurons to ethanol, and the potential of target-derived neurotrophic factors to ameliorate ethanol neurotoxicity. These studies revealed the following: Chronic prenatal ethanol exposure reduces the number of motoneurons present in the lateral motor column after the cell death period [embryonic day 12 (E12)]. Ethanol tends to inhibit embryonic motility, particularly during the later stages viewed (E9-E11). Chronic ethanol exposure reduces the neurotrophic activity contained in target muscle tissue. Such diminished support could contribute to the observed motoneuron loss. Direct exposure of spinal cord neurons to ethanol decreases neuronal survival and process outgrowth in a dose-dependent manner, but the addition of target muscle extract to ethanol-containing cultures can ameliorate this ethanol neurotoxicity. These studies demonstrate ethanol toxicity in a population not previously viewed in this regard and suggest a mechanism that may be related to this cell loss (i.e., decreased neurotrophic support). © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The functional status of brachially innervated hindlimbs, produced by transplanting hindlimb buds of chick embryos in place of forelimb buds, was quantified by analyzing the number and temporal distribution of spontaneous limb movements. Brachially innervated hindlimbs exhibited normal motility until E10 but thereafter became significantly less active than normal limbs and the limb movements were more randomly distributed. Contrary to the findings with axolotls and frogs, functional interaction between brachial motoneurons and hindlimb muscles cannot be sustained in the chick embryo. Dysfunction is first detectable at E10 and progresses to near total immobility by E20 and is associated with joint ankylosis and muscular atrophy. Although brachially innervated hindlimbs were virtually immobile by the time of hatching (E21), they produced strong movements in response to electrical stimulation of their spinal nerves, suggesting a central rather than peripheral defect in the motor system. The extent of motoneuron death in the brachial spinal cord was not significantly altered by the substitution of the forelimb bud with the hindlimb bud, but the timing of motoneuron loss was appropriate for the lumbar rather than brachial spinal cord, indicating that the rate of motoneuron death was dictated by the limb. Measurements of nuclear area indicated that motoneuron size was normal during the motoneuron death period (E6-E10) but the nuclei of motoneurons innervating grafted hindlimbs subsequently became significantly larger than those of normal brachial motoneurons. Although the muscle mass of the grafted hindlimb at E18 was significantly less than that of the normal hindlimb (and similar to that of a normal forelimb), electronmicroscopic examination of the grafted hindlimbs and brachial spinal cords of E20 embryos revealed normal myofiber and neuromuscular junction ultrastructure and a small increase in the number of axosomatic synapses on cross-sections of motoneurons innervating grafted hindlimbs compared to motoneurons innervating normal forelimbs. The anatomical data indicate that, rather than being associated with degenerative changes, the motor system of the brachial hindlimb of late-stage embryos is intact, but inactive. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
In order to examine the role of target cells in the development of spinal motoneurons, the neural tube from thoracic segments was transplanted to the lumbar region on embryonic day (E) 2, and allowed to innervate hindlimb muscles in the chick embryo. When examined at later stages of development, the proportion of white and gray matter in the thoracic transplant was altered to resemble normal lumbar cord. Many thoracic motoneurons were able to survive up to posthatching stages following transplantation. The branching and arborization of dendrites of thoracic motoneurons innervating hindlimb muscles, as well as motoneuron (soma) size, were also increased to an extent approximating that seen in normal lumbar motoneurons. In support of previous studies using a similar transplant model, we have also found that the peripheral (intramuscular) branching pattern of thoracic motoneuron axons innervating hindlimb muscles was similar to that of normal lumbar motoneurons. Axon size and the degree of myelination of transplanted thoracic motoneuron axons were also increased so that these parameters more closely resembled axons of normal lumbar than normal thoracic spinal motoneurons. Virtually all of the changes in motoneuron properties noted above were observed irrespective of whether or not the transplanted spinal cord had developed in anatomical continuity with the host rostral cord. Accordingly, it is unlikely that the changes in the development of transplanted thoracic motoneurons reported here are induced either entirely, or in part, by signals derived from the host central nervous system. Rather, these changes appear to be mediated by interactions between the transplanted motoneurons and the hindlimb. We favor the notion that retrograde trophic signals derived from the hindlimb act to modulate the development of innervating motoneurons. Whether this signal involves a diffusible trophic agent released from target cells, or acts by some other mechanism is presently unknown.  相似文献   

4.
In order to examine the role of target cells in the development of spinal motoneurons, the neural tube from thoracic segments was transplanted to the lumbar region on embryonic day (E) 2, and allowed to innervate hindlimb muscles in the chick embryo. When examined at later stages of development, the proportion of white and gray matter in the thoracic transplant was altered to resemble normal lumbar cord. Many thoracic motoneurons were able to survive up to posthatching stages following transplantation. The branching and arborization of dendrites of thoracic motoneurons innervating hindlimb muscles, as well as motoneuron (soma) size, were also increased to an extent approximating that seen in normal lumbar motoneurons. In support of previous studies using a similar transplant model, we have also found that the peripheral (intramuscular) branching pattern of thoracic motoneuron axons innervating hindlimb muscles was similar to that of normal lumbar motoneurons. Axon size and the degree of myelination of transplanted thoracic motoneuron axons were also increased so that these parameters more closely resembled axons of normal lumbar than normal thoracic spinal motoneurons. Virtually all of the changes in motoneuron properties noted above were observed irrespective of whether or not the transplanted spinal cord had developed in anatomical continuity with the host rostral cord. Accordingly, it is unlikely that the changes in the development of transplanted thoracic motoneurons reported here are induced either entirely, or in part, by signals derived from the host central nervous system. Rather, these changes appear to be mediated by interactions between the transplanted motoneurons and the hindlimb. We favor the notion that retrograde trophic signals derived from the hindlimb act to modulate the development of innervating motoneurons. Whether this signal involves a diffusible trophic agent released from target cells, or acts by some other mechanism is presently unknown. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
We have used calcium imaging to visualize the spatiotemporal organization of activity generated by in vitro spinal cord preparations of the developing chick embryo and the neonatal mouse. During each episode of spontaneous activity, we found that chick spinal neurons were activated rhythmically and synchronously throughout the transverse extent of the spinal cord. At the onset of a spontaneous episode, optical activity originated in the ventrolateral part of the cord. Back-labeling of spinal interneurons with calcium dyes suggested that this ventrolateral initiation was mediated by activation of a class of interneurons, located dorsomedial to the motor nucleus, that receive direct monosynaptic input from motoneurons. Studies of locomotor-like activity in the anterior lumbar segments of the neonatal mouse cord revealed the existence of a rostrocaudal wave in the oscillatory component of each cycle of rhythmic motoneuron activity. This finding raises the possibility that the activation of mammalian motoneurons during locomotion may share some of the same rostrocaudally organized mechanisms that evolved to control swimming in fishes.  相似文献   

6.
Treatment of chick embryos with neuromuscular blocking agents such as curare during periods of naturally occurring motoneuron death results in a striking reduction of this normal cell loss. Inactivity-induced changes in motoneuron survival were found to be associated with increased levels of AChRs and AChR-clusters in skeletal muscle and with increased focal sites of AChE that are innervated ('synaptic sites'). Treatment of embryos with curare after the normal cell death period (E12-E15) resulted in no change in motoneuron survival. Although AChR-clusters and focal sites of AChE were increased in these embryos on E16, many of these sites were uninnervated. Treatment of embryos with nicotine or decamethonium (E6-E10) also reduced neuromuscular activity but did not alter motoneuron survival nor did such treatment alter AChRs. The different effects of curare vs nicotine and decamethoniam on motoneuron survival and AChRs may be related to the fact that the former is a competitive blocker whereas the latter two drugs are depolarizing blockers. Finally, treatment of embryos (E6-9) with doses of curare (1 mg daily) that allow for the almost complete recovery of neuromuscular activity a few days following treatment (by E16) resulted in the gradual loss of the excess motoneurons that were present on E10, and by E16 the number of remaining AChR clusters and focal sites of AChE were also decreased to levels comparable to control values. Inactivity-induced changes in AChRs or AChR-clusters may be an important factor in the reduced motoneuron death that accompanies neuromuscular blockade during critical stages of development. These receptor changes very likely reflect increased synaptogenesis in the muscles of paralyzed embryos which in turn may act to reduce motoneuron death by providing increased access to muscle-derived neurotrophic molecules.  相似文献   

7.
The present study investigated the effects of spinal cord stimulation, neuromuscular blockade, or a combination of the two on neuromuscular development both during and after the period of naturally occurring motoneuron death in the chick embryo. Electrical stimulation of the spinal cord was without effect on motoneuron survival, synaptogenesis, or muscle properties. By contrast, activity blockade rescued motoneurons from cell death and altered synaptogenesis. A combination of spinal cord stimulation and activity blockade resulted in a marked increase in motoneuron death, and also altered synaptogenesis similar to that seen with activity blockade alone. Perturbation of normal nerve–muscle interactions by activity blockade may increase the vulnerability of developing motoneurons to excessive excitatory afferent input (spinal cord stimulation) resulting in excitotoxic-induced cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
To isolate cDNAs that are involved in limb-motoneuron development, we compared mRNAs of lumbar and thoracic motoneurons purified from spinal cord of E4 chick embryo by differential display. In situ hybridization demonstrated that one of cDNAs is expressed exclusively in lateral motor column in spinal cord from E4 to E10. We identified two mRNA variants for the cDNA by library screening. The long form (788 amino acids) was identical to chick MN-cadherin. The short variant (543 amino acids) lacks the first two of five extracellular domains of MN-cadherin, which commonly exist in classical cadherins. The amino acid sequence of the short form is identical to that of the carboxyl terminal MN-cadherin, except for the distinct signal sequence. The ratio of mRNA of short form to long form was 1-20. cDNA transfection study revealed that the long form but not the short form MN-cadherin had cell adhesion activity.  相似文献   

9.
Chronic treatment of chick embryos with neuromuscular blocking agents, such as curare, rescues motoneurons from naturally occurring cell death. In the present study, embryos treated with curare from E6 to E9 had 35% more motoneurons than controls on E10 and 42% more than controls on E16. Previous studies have shown that several aspects of motoneuron differentiation occur normally in curare-treated embryos. We report here that dendrite growth and arborization is also unaltered on E10 and E16 following curare treatment. A quantitative analysis of afferent synapses on motoneurons shows that the packing density of both axosomatic and axodendritic synapses is also normal on E10 in curare-treated embryos, despite the greater number of motoneurons present. This indicates that the interneurons that provide presynaptic input to motoneurons are able to compensate for the increased number of synaptic sites made available by curare treatment. However, by E16 the packing density of synapses is reduced by about half. Because motoneurons and their dendrites continue to grow between E10 and E16, the further increase in synaptic sites made available in curare-treated embryos apparently exceeds the compensatory capacity of presynaptic interneurons on E16. One can conclude from these results that the increased survival of motoneurons in curare-treated embryos is not owing to an increase in afferent synapses. Motoneurons in these embryos continue to survive in the face of either no change (E10) or a reduction (E16) in the number of axodendritic and axosomatic synapses. Therefore, increased motoneuron survival in this situation is very likely regulated primarily by motoneuron-target interactions.  相似文献   

10.
11.
Motoneuron development was studied in the spinal cord of the mouse mutant, muscular dysgenesis, between embryonic days (E) 13 and 18. Dysgenic embryos are characterized by the absence of neuromuscular activity (motility) and exhibit a number of other striking changes in neuromuscular development. Many of these changes have also been observed in chick embryos chronically treated with neuromuscular blocking agents that suppress motility. Motoneuron survival, as well as several other aspects of neuronal development, was examined in the thoracic and lumbar spinal cords of mutant and control embryos. There was a significant decrease in motoneuron numbers in control embryos indicating the presence of naturally occurring cell death in the mouse spinal cord. At all ages examined, the dysgenic embryos had significantly more healthy and significantly fewer degenerating motoneurons than controls. There were no differences in the number of dorsal root ganglion neurons or in any of the other morphometric parameters examined between mutant and control embryos. Creatine kinase activity, a marker for myofiber maturation, was significantly reduced in the limb musculature of mutant embryos. Choline acetyltransferase activity was significantly increased in the spinal cord of mutant embryos. No significant differences were observed in spinal cord levels of acetylcholinesterase activity between control and mutant embryos. The absence of muscle contractions in the dysgenic mouse is associated with a number of changes in neuromuscular development, including a substantial reduction of naturally occurring motoneuron death.  相似文献   

12.
In this study we asked whether growth hormone (GH) and one of its key mediators, insulin-like growth factor I (IGF-I), influence spinal motoneuron size in conjunction with whole body size. We present evidence that GH has such a role, possibly without the mediation of IGF-I. Both lumbar motoneuron and body size were found to be increased relative to littermate controls in transgenic mice overexpressing GH, while body size, but not motoneuron size, was increased in mice overexpressing IGF-I. GH overexpression coordinately increased nucleolar, nuclear, and cell body size in lumbar spinal motoneurons, so that their normal size relationships were preserved in the transgenic mice. In addition, spinal cord and brain weights were significantly increased in both types of transgenic animal. We conclude that GH can regulate motoneuron, central nervous system, and body size in the same animal, and that IGF-I can mimic the effects of GH on at least two of these three parameters. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 202–212, 1997.  相似文献   

13.
Thoracic spinal cord transplanted to the lumbar region at the time of neural tube closure in the chick embryo survives and initially differentiates normally similar to in situ thoracic cord. Normal numbers of motoneurons are produced that innervate the host hindlimb musculature. In control thoracic cord approximately 70% of the motoneurons are lost by normal cell death between embryonic day (E) 6 and E11-E12. By contrast, the transplanted thoracic cord loses only about 30% of the motoneurons during this period. Transplantation of one hindlimb to the thoracic region also reduces the normal loss of in situ thoracic motoneurons. We conclude that some factor(s) associated with the increased target size provided by the hindlimbs promotes the survival of thoracic motoneurons. In contrast, by E16-E18 motoneuron numbers in the thoracic transplants decrease to below control levels. Dorsal root ganglion cells in the transplant were also initially increased (on E8) but later decreased to below control values. Hindlimb muscles innervated by thoracic motoneurons in the transplant also differentiated normally up to E10 to E12. Myotube size and numbers, muscle size and myotube types (fast versus slow) all developed normally in several thoracically-innervated hindlimb muscles. However, beginning on E14 myotube numbers and muscle size were markedly decreased resulting in muscle atrophy. Injections of horseradish peroxidase (HRP) into the thoracic transplants labelled neurons in the host spinal cord and brainstem rostral to the transplant thereby indicating an anatomical continuity between host and transplant neural tube. Injections of HRP into specific thoracically innervated hindlimb muscles on E8 labelled distinct pools of motoneurons in the transplants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Regional differences in the number of motoneurons in the spinal cord of the chick are thought to arise developmentally by region-specific cell death and cell migration. In this way, a numerically homogeneous motor column throughout the spinal cord is believed to be molded into the adult pattern. Region-specific differences in proliferation are not thought to play a significant role in this process. By counting motoneurons in serial sections throughout the rostral-caudal extent of the spinal cord on Embryonic Day 4 in the chick, we have found that the numerical variations in motoneurons in different spinal cord regions are already foreshadowed by this stage, which is before the onset of both cell death and the secondary migration of neurons out of the motor column. These results indicate that although nonproliferative events may contribute to the later regional variations in motoneuron numbers, the initial differences themselves are created early on by regionally specific proliferative events.  相似文献   

15.
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2(+)-permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca(2+)-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca(2+)-permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons.  相似文献   

16.
17.
Summary Trypsin dissociated somatic muscle from 11-day chick embryos was cultured upon a collagen substrate, and later confronted with 7–9 day chick lumbar spinal cord. Regions of contact between outgrowing nerve and muscle were identified light microscopically and prepared for electron microscopy. Neuromuscular junctions comparable to those found in the developing chick embryo formed de novo between homologous explants. Appearances were also found suggesting that mechanisms may exist to maintain apposition between nerve and muscle in the early stages of development of such junctions.  相似文献   

18.
Thioredoxin-2 (Trx2) is a mitochondrial protein using a dithiol active site to reduce protein disulfides. In addition to the cytoprotective function of this enzyme, several studies have highlighted the implication of Trx2 in cellular signaling events. In particular, growing evidence points to such roles of redox enzymes in developmental processes taking place in the central nervous system. Here, we investigate the potential implication of Trx2 in embryonic development of chick spinal cord. To this end, we first studied the distribution of the enzyme in this tissue and report strong expression of Trx2 in chick embryo post-mitotic neurons at E4.5 and in motor neurons at E6.5. Using in ovo electroporation, we go on to highlight a cytoprotective effect of Trx2 on the programmed cell death (PCD) of neurons during spinal cord development and in a novel cultured spinal cord explant model. These findings suggest an implication of Trx2 in the modulation of developmental PCD of neurons during embryonic development of the spinal cord, possibly through redox regulation mechanisms.  相似文献   

19.
20.
During normal vertebrate development, Hoxd10 and Hoxd11 are expressed by differentiating motoneurons in restricted patterns along the rostrocaudal axis of the lumbosacral (LS) spinal cord. To assess the roles of these genes in the attainment of motoneuron subtypes characteristic of LS subdomains, we examined subtype complement after overexpression of Hoxd10 or Hoxd11 in the embryonic chick LS cord and in a Hoxd10 loss-of-function mouse embryo. Data presented here provide evidence that Hoxd10 defines the position of the lateral motor column (LMC) as a whole and, in rostral LS segments, specifically promotes the development of motoneurons of the lateral subdivision of the lateral motor column (LMCl). In contrast, Hoxd11 appears to impart a caudal and medial LMC (LMCm) identity to some motoneurons and molecular profiles suggestive of a suppression of LMC development in others. We also provide evidence that Hoxd11 suppresses the expression of Hoxd10 and the retinoic acid synthetic enzyme, retinaldehyde dehydrogenase 2 (RALDH2). In a normal chick embryo, Hoxd10 and RALDH2 are expressed throughout the LS region at early stages of motoneuron differentiation but their levels decline in Hoxd11-expressing caudal LS segments that ultimately contain few LMCl motoneurons. We hypothesize that one of the roles played by Hoxd11 is to modulate Hoxd10 and local retinoic acid levels and thus, perhaps define the caudal boundaries of the LMC and its subtype complement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号