首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Corticospinal axon outgrowth in vivo and the ability to sprout or regenerate after injury decline with age. This developmental decline in growth potential has been correlated with an increase in inhibitory myelin‐associated proteins in older spinal cord. However, previous results have shown that sprouting of corticospinal fibers after contralateral lesions begins to diminish prior to myelination, suggesting that a decrease in growth promoting and/or an increase in inhibitory molecules in spinal gray matter may also regulate corticospinal axon outgrowth. To address this possibility, we carried out in vitro experiments to measure neurite outgrowth from explants of 1‐day‐old hamster forelimb sensorimotor cortex that were plated onto membrane carpets or membrane stripe assays prepared from white or gray matter of 1‐to 22‐day‐old cervical spinal cord. On uniform carpets and in the stripe assays cortical neurites grew robustly on young but not older membranes from both white and gray matter. Mixtures of membranes from 1‐ and 15‐day spinal cord inhibited neurite outgrowth, suggesting that the presence of inhibitory molecules in the 15‐day cord overwhelmed permissive or growth promoting molecules in membranes from 1‐day cord. Video microscopic observations of growth cone behaviors on membrane stripe assays transferred to glass coverslips supported this view. Cortical growth cones repeatedly collapsed at borders between permissive substrates (laminin or young membrane stripes) and nonpermissive substrates (older membrane stripes). Growth cones either turned away from the older membranes or reduced their growth rates. These results suggest that molecules in both the gray and white matter of the developing spinal cord can inhibit cortical neurite outgrowth. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 393–406, 1999  相似文献   

2.
Corticospinal axon outgrowth in vivo and the ability to sprout or regenerate after injury decline with age. This developmental decline in growth potential has been correlated with an increase in inhibitory myelin-associated proteins in older spinal cord. However, previous results have shown that sprouting of corticospinal fibers after contralateral lesions begins to diminish prior to myelination, suggesting that a decrease in growth promoting and/or an increase in inhibitory molecules in spinal gray matter may also regulate corticospinal axon outgrowth. To address this possibility, we carried out in vitro experiments to measure neurite outgrowth from explants of 1-day-old hamster forelimb sensorimotor cortex that were plated onto membrane carpets or membrane stripe assays prepared from white or gray matter of 1-to 22-day-old cervical spinal cord. On uniform carpets and in the stripe assays cortical neurites grew robustly on young but not older membranes from both white and gray matter. Mixtures of membranes from 1- and 15-day spinal cord inhibited neurite outgrowth, suggesting that the presence of inhibitory molecules in the 15-day cord overwhelmed permissive or growth promoting molecules in membranes from 1-day cord. Video microscopic observations of growth cone behaviors on membrane stripe assays transferred to glass coverslips supported this view. Cortical growth cones repeatedly collapsed at borders between permissive substrates (laminin or young membrane stripes) and nonpermissive substrates (older membrane stripes). Growth cones either turned away from the older membranes or reduced their growth rates. These results suggest that molecules in both the gray and white matter of the developing spinal cord can inhibit cortical neurite outgrowth.  相似文献   

3.
During development, many CNS projection neurons establish topographically ordered maps in their target regions. Myelin-associated inhibitors of neurite growth contribute to the confinement of fiber tracts during development and limit plastic changes after CNS projections have been formed. Neutralization of myelin-associated growth inhibitors leads to an expansion of the retinal innervation of the superior colliculus (SC). In the lesioned adult mammalian CNS, these long projection neurons are usually unable to regrow axons over long distances after lesion due to myelin-associated inhibitors, which interfere with axonal growth in vivo and in vitro. Application of a specific antibody directed against myelin-inhibitors (IN-1) promotes regrowth of corticospinal tract or retinal ganglion cell axons. In the present study, we asked whether application of an antibody to myelin-associated growth inhibitors would lead to disturbances of target-specific axon guidance. To examine this issue, we used an in vitro model, the “stripe assay,” to examine the behavior of rat retinal ganglion cell axons on membranes from embryonic and deafferented adult rat SC. On membrane preparations from embryonic rat SC, retinal fibers avoid posterior tectal membranes, possibly due to the presence of a repulsive factor. Nasal retinal axons show a random growth pattern. On membranes prepared from the deafferented adult rat SC, temporal and nasal axons prefer to grow on membranes prepared from their specific target region, which suggests the involvement of target-derived attractive guidance components. The results of the present study show that retinal axons grow significantly faster in the presence of IN-1 antibody that neutralizes myelin-associated growth inhibitors present in the membrane preparations from the adult rat SC. IN-1 antibody, however, does not interfere with specific axonal guidance. This suggests that axonal guidance and specific target finding are independently regulated in retinal axons. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Higher vertebrate CNS myelin and oligodendrocytes in vitro contain membrane-bound surface proteins of 35 and 250 kDa with marked inhibitory properties for neurite growth and for fibroblast spreading. The inhibitory activity is neutralized by monoclonal antibody IN-1, which binds to the inhibitory proteins. IN-1 also neutralizes the nonpermissive substrate properties of adult rat optic nerve explants and spinal cord white matter in vitro, thus suggesting a crucial involvement of these inhibitors in the nonpermissive nature of the adult CNS of higher vertebrates. We have determined time of appearance and distribution of the IN-1-sensitive inhibitory activity in the rat. In the optic nerve, inhibitors appear after the period of axonal growth and before myelination. A similar schedule was found for the spinal cord and for the cerebellum. No IN-1-sensitive inhibitory activity was found outside the CNS or in oligodendrocyte-free regions of the CNS. Where investigated, the distribution of inhibitory oligodendrocytes and of IN-1-sensitive inhibitory activity correlated well. Our data suggest that IN-1-sensitive inhibitory activity in vivo might be an oligodendrocyte-specific property.  相似文献   

5.
NADH oxidase activity of plasma membranes from rat hepatoma and HeLa cells responded to thiol reagents in a manner different from that of plasma membranes of liver. Specifically, the NADH oxidase activity of plasma membranes of HeLa cells was inhibited by submicromolar concentrations of the thiol reagentsp-chloromercuribenzoate (PCMB),N-ethylmaleimide (NEM), or 5,5-dithiobis-(2-nitrophenylbenzoic acid) (DTNB), whereas that of the rat liver plasma membranes was unaffected or stimulated over a wide range of concentrations extending into the millimolar range. With some hepatoma preparations, the NADH oxidase activity of hepatoma plasma membranes was stimulated rather than inhibited by PCMB, whereas with all preparations of hepatoma plasma membranes, NEM and DTNB stimulated the activity. In contrast, NADH oxidase activity of rat liver plasma membrane was largely unaffected over the same range of PCMB concentrations that either stimulated or inhibited with rat hepatoma or HeLa cell plasma membranes. Dithiothreitol and glutathione stimulated NADH oxidase activity of plasma membranes of rat liver and hepatoma but inhibited that of HeLa plasma membranes. The findings demonstrate a difference between the NADH oxidase activity of normal rat liver plasma membranes of rat hepatoma and HeLa cell plasma membranes in addition to the differential response to growth factors and hormones reported previously (Brunoet al., 1992). Results are consistent with a structural modification of a NADH oxidase activity involving thiol groups present in plasma membranes of rat hepatoma and HeLa cells but absent or inaccessible with plasma membranes of rat liver.  相似文献   

6.
Previous studies have shown that plasma membranes of murine lymphocytes and lymphoid tumor cells can reversibly inhibit the growth of both normal and transformed lymphocytes. The inhibitor can be extracted with organic solvents and has properties consistent with it being a lipid or lipid-like component of the membrane. This report identifies a series of cloned macrophage hybridoma cell lines, obtained by fusion of splenic adherent cells and the P388D1 line, which have very high levels of lipid-like growth-inhibitory molecules. Furthermore, a survey of seven cloned lines indicated that the macrophages fell into two distinct groups with regard to their level of growth-inhibitory activity. Group 1 lines had little or no inhibitory activity when cells were examined for their effect on a B lymphocyte proliferative response. Organic extracts from these macrophages had inhibitory activity (on a per cell basis) comparable to that seen with extracts of the P388D1 parental cell line and lymphoid tumor cells. In contrast, relatively low numbers of Group 2 macrophages could profoundly inhibit B macrophage proliferation. The growth-inhibitory activity was quantitatively recovered in organic extracts of the macrophages. Although the precise nature of the lipid moiety remains undefined, the data argue against the involvement of oxidized cholesterol. These findings indicate that lipid-like inhibitors of cell growth are present and functional in these macrophage cell lines. In addition, the results demonstrate that the inhibitory activity found in plasma membranes and liposomes is present and active in the membranes of intact cells, which is in contrast to the possibility that the inhibitor is an artifact generated during subcellular fractionation. Thus, the inhibitor is likely to have a physiologic role in growth control and in macrophage-mediated immunoregulation, probably acting via a mechanism involving cell-cell contact.  相似文献   

7.
《The Journal of cell biology》1988,107(6):2281-2291
Differentiated oligodendrocytes and central nervous system (CNS) myelin are nonpermissive substrates for neurite growth and for cell attachment and spreading. This property is due to the presence of membrane-bound inhibitory proteins of 35 and 250 kD and is specifically neutralized by monoclonal antibody IN-1 (Caroni, P., and M. E. Schwab. 1988. Neuron. 1:85-96). Using rat optic nerve explants, CNS frozen sections, cultured oligodendrocytes or CNS myelin, we show here that highly invasive CNS tumor line (C6 glioblastoma) was not inhibited by these myelin- associated inhibitory components. Lack of inhibition was due to a specific mechanism as the metalloenzyme blocker 1,10-phenanthroline and two synthetic dipeptides containing metalloprotease-blocking sequences (gly-phe, tyr-tyr) specifically impaired C6 cell spreading on CNS myelin. In the presence of these inhibitors, C6 cells were affected by the IN-1-sensitive inhibitors in the same manner as control cells, e.g., 3T3 fibroblasts or B16 melanomas. Specific blockers of the serine, cysteine, and aspartyl protease classes had no effect. C6 cell spreading on inhibitor-free substrates such as CNS gray matter, peripheral nervous system myelin, glass, or poly-D-lysine was not sensitive to 1,10-phenanthroline. The nonpermissive substrate properties of CNS myelin were strongly reduced by incubation with a plasma membrane fraction prepared from C6 cells. This reduction was sensitive to the same inhibitors of metalloproteases. In our in vitro model for CNS white matter invasion, cell infiltration of optic nerve explants, which occurred with C6 cells but not with 3T3 fibroblasts or B16 melanomas, was impaired by the presence of the metalloprotease blockers. These results suggest that C6 cell infiltrative behavior in CNS white matter in vitro occurs by means of a metalloproteolytic activity, which probably acts on the myelin-associated inhibitory substrates.  相似文献   

8.
Previous studies showed that amitriptyline (AMI), a tricyclic antidepressant, inhibited neurite outgrowth from chick embryonic cerebral explants and inhibited adenylyl cyclase activity in cerebral membrane preparations. In the present study, we have investigated the possibility that AMI may have additional effects on cellular metabolism and signal transduction that underlie AMI-mediated inhibition of neurite outgrowth. In vitro AMI inhibited phospholipase C in a dose- and GTP-dependent manner in membranes from 8-day-old chick forebrain. Brain homogenates from 8-day-old chick embryos, treated in vivo for 6 days with AMI (20 μg/g/day), showed significant reductions in (1) phosphorylation of two polypeptides (49 and 105 kD), and (2) levels of three polypeptides (43, 53, and 92 kD). Western blots showed that the 43- and 53-kD polypeptides corresponded to actin and tubulin, respectively. Diolein and dilinolein, potent activators of protein kinase C, stimulated neurite outgrowth and reversed the inhibitory effects of AMI. Sphingosine, a protein kinase C inhibitor, significantly inhibited neurite outgrowth and eliminated the stimulatory effects of diolein and dilinolein on neurite outgrowth. These data suggest that AMI-mediated inhibition of neurite outgrowth involves multiple effects on cellular metabolism and signal transduction. A hypothesis consistent with our data is that AMI interferes in some manner with the action of G proteins in the signal transduction cascade. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
10.
We used compartmented cultures to study the regulation of adult sensory neurite growth by neurotrophins. We examined the effects of the neurotrophins nerve growth factor (NGF), neurotrophin-3 (NT3), and BDNF on distal neurite elongation from adult rat dorsal root ganglion (DRG) neurons. Neurons were plated in the center compartments of three-chambered dishes in the absence of neurotrophin, and neurite extension into the distal (side) compartments containing NGF, BDNF, or NT3 was quantitated. Initial proximal neurite growth did not require any of the neurotrophins, while subsequent elongation into distal compartments required NGF. After neurites had extended into NGF-containing distal compartments, removal of NGF by treatment with anti-NGF resulted in the cessation of growth with minimal neurite retraction. In contrast to the effects of NGF, no distal neurite elongation was observed into compartments with BDNF or NT3. To examine possible additive influences, neurite extension into compartments containing BDNF plus NGF or NT3 plus NGF was quantitated. There was no increased neurite extension into NGF plus NT3 compartments, while the combination of BDNF plus NGF resulted in an inhibition of neurite extension compared with NGF alone. We then investigated whether the regrowth of neurites that had originally grown into NGF subsequent to in vitro axotomy still required NGF. The results demonstrated that unlike adult sensory nerve regeneration in vivo, the in vitro regrowth did require NGF, and neither BDNF nor NT3 was able to substitute for NGF. Since the initial growth from neurons after dissociation (which is also a regenerative response) did not require NGF, it would appear that neuritic growth and regrowth of adult DRG neurons in vitro includes both NGF-independent and NGF-dependent components. The compartmented culture system provides a unique model to further study aspects of this differential regulation of neurite growth. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 395–410, 1997  相似文献   

11.
Summary We have previously reported the transformation by Rous sarcoma virus of a cloned epithelial cell line (BRL) established from Buffalo rat liver by H. Coon. The nontransformed (BRL) and transformed (RSV-BRL) cells grew at comparable rates in culture, whereas only the transformed cells were tumorigenic in vivo. We report here on the existence in rat and mouse sera of a growth inhibitor for the nontransformed BRL cells. The transformed BRL cells (RSV-BRL) were insensitive to this inhibitor. The inhibitory activity was not prominent in sera from other species of animals tested except for rabbit; this serum inhibited the growth of RSV-BRL cells more strongly than that of BRL cells. The growth inhibitor was partially purified from rat serum. It is a protein free of lipid and has a molecular weight of about 220 000. The inhibitor could be separated into three components of pI 4.6, 5.2 (major) and 5.6 by isoelectric electrophoresis. EDITOR'S STATEMENT Although compelling theoretical arguments sometimes can be made for the likely existence of growth-inhibitory substances of physical relevance in the control of cell proliferation, experiments aimed at identifying and studying such factors often are difficult to design and interpret, and little strong data exists to suggest that growth-inhibitory substances are important regulatorsin vivo. The information presented in this paper represents a start toward developing a useful system for studying growth-inhibitory factor. David W. Barnes  相似文献   

12.
The initial rate of mannosylphosphoryldolichol formation by pig brain white matter is 2.9 to 3.3-fold higher in membranes from actively myelinating animals as compared to similar preparations from adults. Exogenous dolichyl monophosphate stimulated mannolipid synthesis in both preparations indicating that the level of the acceptor lipid was rate-limiting. The relative enhancement, however, was higher in membranes from adult animals reducing the ratio of initial rates for young/adult. Exogenous dolichyl monophosphate also stimulated the labeling of a mannosylated oligosaccharide lipid and mannoproteins, including a polypeptide (apparent molecular weight of 100,000) not labeled by gray matter membranes.  相似文献   

13.
Four amphipathic molecules with known local anesthetic activity, dibucaine, tetracaine, chlorpomazine, and quinacrine, inhibited the binding ofl-[3H]glutamic acid to rat brain synaptic plasma membranes and to the purified glutamate binding protein. Neither haloperidol nor diphenylhydantoin had significant inhibitory effects on the glutamate binding activity of the membranes or of the purified protein. The amphipathic drugs apparently inhibitedl-[3H]glutamate binding to synaptic membranes by a mixed type of inhibition. The inhibitory activity of quinacrine on glutamate binding to the synaptic membranes was greater in a low ionic strength, Ca2+-free buffer medium, than in a physiologic medium (Krebs-Henseleit buffer). Removal of Ca2+ from the Krebs solution enhanced quinacrine's inhibition of glutamate binding. Quinacrine up to 1 mM concentration did not inhibit the high affinity Na+-dependentl-glutamate transport in these membrane preparations. The importance of Ca2+ in the expression of quinacrine's effects on the glutamate binding activity of synaptic membranes and the observed tetracaine and chlorpromazine-induced increases in the transition temperature for the glutamate binding process of these membranes, were indicative of an interaction of the local anesthetics with the lipid environment of the glutamate binding sites.  相似文献   

14.
Atrial natriuretic peptide (ANP) and endothelin (ET) are endogenous vasoactive factors that exert potent diuretic and natriuretic actions. We have previously shown that ANP and ET-3 act through an NO pathway to inhibit the sodium-glucose cotransporter (SGLT) in the intestine [Gonzalez Bosc LV, Elustondo PA, Ortiz MC, Vidal NA. Effect of atrial natriuretic peptide on sodium-glucose cotransport in the rat small intestine. Peptides 1997; 18: 1491-5; Gonzalez Bosc LV, Majowicz MP, Ortiz MC, Vidal NA. Effects of endothelin-3 on intestinal ion transport. Peptides 2001; 22: 2069-75.]. Here we address the role of ANP and ET-3 on SGLT activity in renal proximal tubules. In rat renal cortical brush border membranes (BBV), fluorescein isothiocianate (FITC) labeling revealed a specific 72-kD peptide that exhibits increased FITC labeling in the presence of Na+ and D-glucose. Using alpha-14C-methylglucose active uptake, rat BBV were shown to possess SGLT activity with an affinity constant (K(0.5) approximately 2.4 mM) that is consistent with the expression of the low-affinity, high-capacity SGLT2 isoform. SGLT2 activity in these preparations is dramatically inhibited by ANP and ET-3. This inhibition is independent of changes in membrane lipids and is mimicked by the cGMP analogue, 8-Br-cGMP, suggesting the involvement of cGMP/PKG pathways. These results are the first demonstration that both ANP and ET-3 inhibit rat cortical renal SGLT2 activity, and suggest a novel mechanism by which these vasoactive substances modulate hydro-saline balance at the proximal tubular nephron level.  相似文献   

15.
Nischarin is a cytoplasmic protein expressed in various organs that plays an inhibitory role in cell migration and invasion and the carcinogenesis of breast cancer cells. We previously reported that Nischarin is highly expressed in neuronal cell lines and is differentially expressed in the brain tissue of adult rats. However, the physiological function of Nischarin in neural cells remains unknown. Here, we show that Nischarin is expressed in rat primary cortical neurons but not in astrocytes. Nischarin is localized around the nucleus and dendrites. Using shRNA to knockdown the expression of endogenous Nischarin significantly increases the percentage of neurite-bearing cells, remarkably increases neurite length, and accelerates neurite extension in neuronal cells. Silencing Nischarin expression also promotes dendrite elongation in rat cortical neurons where Nischarin interacts with p21-activated kinase 1/2 (PAK1/2) and negatively regulates phosphorylation of both PAK1 and PAK2. The stimulation of neurite growth observed in cells with decreased levels of Nischarin is partially abolished by IPA3-mediated inhibition of PAK1 activity. Our findings indicate that endogenous Nischarin inhibits neurite outgrowth by blocking PAK1 activation in neurons.  相似文献   

16.
Most biological effects of tissue plasminogen activator (tPA), such as fibrinolysis, are mediated by its protease activity. Recent studies, however, have demonstrated that tPA also has several protease-independent effects such as: neuroprotection, microglial activation, and promoting LTP formation. In order to gain a better understanding of how tPA affects neurons, we examined neurite outgrowth and cell survival in low density cerebrocortical neuronal culture in the presence of tPA. tPA enhanced neurite elongation and neuronal survival. tPA protease inhibitors, PAI-1 or PMSF, did not alter either effect. Consistent with neurotrophic effects, tPA activated Raf-K/ERK, PKC and PI3-K/Akt, 5-60 min after treatment. In addition, specific inhibitors of these kinases reduced tPA-induced neurite outgrowth. Interestingly, survival-promoting effect of tPA was attenuated only by PI3-K inhibitors. Activation of signaling kinases suggests that tPA activates an upstream membrane receptor. Thus far, three membrane proteins, low density lipoprotein receptor-related protein (LRP), mannose receptor (MR), and annexin-II (AII), have been identified to bind tPA. While inhibiting LRP or MR did not change tPA-induced neurite outgrowth and cell survival, inhibiting AII blocked neurotrophic effects of tPA. Taken together, our results indicate that tPA has novel, non-proteolytic neurotrophic effects on cultured cortical neurons, which are likely mediated by AII.  相似文献   

17.
This work provides direct evidence that sustained tensile stress exists in white matter of the mature mouse brain. This finding has important implications for the mechanisms of brain development, as tension in neural axons has been hypothesized to drive cortical folding in the human brain. In addition, knowledge of residual stress is required to fully understand the mechanisms behind traumatic brain injury and changes in mechanical properties due to aging and disease. To estimate residual stress in the brain, we performed serial dissection experiments on 500-mum thick coronal slices from fresh adult mouse brains and developed finite element models for these experiments. Radial cuts were made either into cortical gray matter, or through the cortex and the underlying white matter tract composed of parallel neural axons. Cuts into cortical gray matter did not open, but cuts through both layers consistently opened at the point where the cut crossed the white matter. We infer that the cerebral white matter is under considerable tension in the circumferential direction in the coronal cerebral plane, parallel to most of the neural fibers, while the cerebral cortical gray matter is in compression. The models show that the observed deformation after cutting can be caused by more growth in the gray matter than in the white matter, with the estimated tensile stress in the white matter being on the order of 100–1,000 Pa.  相似文献   

18.
We examined the concentration- and time-dependent effects of two related protein kinase inhibitors, KT5926 and K-252a, on neurite formation and nerve growth cone migration of chick embryo sensory neurons. The effects of these drugs on neurite formation over an 18-h period were dissimilar. KT5926 stimulated neurite formation at concentrations between 100 and 500 nM and inhibited neurite formation at 5 μM. K-252a had no stimulatory effects on neurite formation, and it inhibited neurite formation at concentrations above 50 nM. This difference may occur because K-252a inhibits activation of the nerve growth factor receptor trk A, while KT5926 does not inhibit trk A. Both drugs, however, had similar immediate effects on growth cone migration. Growth cone migration and lamellipodial spreading were rapidly stimulated by 500 nM concentrations of KT5926 and K-252a. At 2 μM levels of either drug, growth cone spreading was still stimulated, but growth cone migration was inhibited by both drugs. These results show that changes in protein phosphorylation/dephosphorylation can rapidly regulate the cellular machinery that is responsible for driving growth cone migration and neurite elongation. The different effects of 2 μM concentrations of either KT5926 or K-252a on growth cone spreading versus migration suggests that the actin-dependent protrusive motility of the growth cone leading margin is regulated differently by changes in protein phosphorylation and dephosphorylation than the cytoskeletal mechanism that drives neurite elongation. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 161–171, 1997  相似文献   

19.
We have studied the activities of 2′,3′-cyclic nucleotide 3′-phosphohydrolase, 1,2-diacylglycerol: CDPethanolamine phosphoethanolamine transferase (EC 2.7.8.1), and 1,2-diacylglycerol: CDPcholine phosphocholine transferase (EC 2.7.8.2) in developing rat brain gray matter and white matter. The specific activity of cyclic nucleotide phosphohydrolase was 5–8 fold higher in white matter than in gray matter at all ages. No significant changes were observed during development. The specific activity of phosphocholine transferase was 2 to 3 fold higher than phosphoethanolamine transferase at all ages both in gray and white matter. Both phosphocholine transferase and phosphoethanolamine transferase increased more than 2 fold in specific activity between 14 and 90 days of age. The total activity of phosphocholine transferase also showed an increase during development. The apparentK m values for nucleotides and dicaprin were similar in gray matter and white matter. Except for lowK m values for nucleotides at 14 days of age, no significant changes were observed during development. Changes in rates of glycerophospholipid synthesis may be partly due to the specific activities of these enzymes but are also determined by the quantities of substrates and inhibitors and by affinities for the substrates. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

20.
Rough endoplasmic reticulum (RER) prepared from bulk-isolated neuronal perikarya of rat brain cortex of different postnatal ages was found to be active in vectorial discharge of nascent proteins through the membrane; this activity increased with the increasing age of animals and reached maximal values in adults. RER isolated from whole cortical tissue (containing all cell types) exhibited vectorial release only up to 18 days of age; the preparation from adult animals was essentially devoid of secretory activity. Controlled proteolysis of various preparations suggested that in neuronal RER of 8-day-old rats the proportion of nascent proteins operationally retained in the intravesicular space was about twice that retained by cortical preparations. For the purpose of comparison, these parameters were studied also in liver RER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号