首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the adult African clawed frog, Xenopus laevis, olfactory epithelium is housed in three separate nasal cavities: the principal cavity, the middle cavity, and the vomeronasal organ. The sensory epithelium in each of these cavities has distinct cellular features, and presumed physiological and behavioral functions, which arise during metamorphosis. Most notably, the middle cavity is formed de novo, and the principal cavity is transformed from a larval sensory epithelium with water exposure to an adult olfactory epithelium with air exposure. To understand the cellular nature of this plasticity more clearly, we characterized the staining patterns generated in the olfactory system of X. laevis with a new monoclonal antibody, anti-E7. The olfactory epithelium is first stained with anti-E7 during late embryonic development. Transection of the olfactory nerves during metamorphosis eliminates all staining and indicates that the staining is associated with mature or nearly mature olfactory receptor neurons. The antibody diffusely stains the vomeronasal organ throughout development and in adults. In the larval principal cavity, the olfactory receptor neurons are brightly stained, but this cellular staining is lost after metamorphosis. The mucus from Bowman's glands in the principal cavity, however, is intensely stained in adults. The middle cavity, throughout development and in adulthood, has the same staining characteristics as the larval principal cavity. Thus, the E7 antibody can distinguish the three areas of the olfactory epithelium, allowing measurement of sensory epithelium volume, and serves as an excellent marker for the changes in the sensory epithelium that occur during metamorphosis.  相似文献   

2.
The functional morphology of the olfactory organ in Spinachia spinachia (L.), which has only a single nare, was studied by light microscopy, scanning electron microscopy, and experimental investigations. It was shown that only the incoming water passes over the olfactory epithelium. The device for ventilating this olfactory organ is an accessory ventilation sac activated by respiratory pressure changes in the buccal cavity. This one-way water current over the olfactory epithelium in a monotrematous olfactory organ was found to be possible because of the morphology of the olfactory organ combined with movements of the lateral wall of the olfactory organ and the nasal tube during respiration. The olfactory epithelium is divided into irregular islets. Both ciliated receptor cells and microvillous receptor cells are present.  相似文献   

3.
The structure of the olfactory organ in larvae and adults of the basal anuran Ascaphus truei was examined using light micrography, electron micrography, and resin casts of the nasal cavity. The larval olfactory organ consists of nonsensory anterior and posterior nasal tubes connected to a large, main olfactory cavity containing olfactory epithelium; the vomeronasal organ is a ventrolateral diverticulum of this cavity. A small patch of olfactory epithelium (the “epithelial band”) also is present in the preoral buccal cavity, anterolateral to the choana. The main olfactory epithelium and epithelial band have both microvillar and ciliated receptor cells, and both microvillar and ciliated supporting cells. The epithelial band also contains secretory ciliated supporting cells. The vomeronasal epithelium contains only microvillar receptor cells. After metamorphosis, the adult olfactory organ is divided into the three typical anuran olfactory chambers: the principal, middle, and inferior cavities. The anterior part of the principal cavity contains a “larval type” epithelium that has both microvillar and ciliated receptor cells and both microvillar and ciliated supporting cells, whereas the posterior part is lined with an “adult‐type” epithelium that has only ciliated receptor cells and microvillar supporting cells. The middle cavity is nonsensory. The vomeronasal epithelium of the inferior cavity resembles that of larvae but is distinguished by a novel type of microvillar cell. The presence of two distinct types of olfactory epithelium in the principal cavity of adult A. truei is unique among previously described anuran olfactory organs. A comparative review suggests that the anterior olfactory epithelium is homologous with the “recessus olfactorius” of other anurans and with the accessory nasal cavity of pipids and functions to detect water‐borne odorants. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Development of the eyes during the larval and metamorphic stages of the turbot Psetta maxima (Teleosti) was studied using microscopy. Events during differentiation of both eyes occur simultaneously, and no differences between he migrating and no-migrating eye were observed during metamorphosis. At hatching, the eyes are rudimentary, consisting of a neuroepithelial optic cup and a small lens. During larval development, major changes occur in the lens and retina, in which cones are the only photoreceptors. The appearance of rods is delayed until metamorphosis. The outer ocular layers (sclera and choroid) arise during larval development as thin connective layers with little differentiation. These layers undergo important changes just before and during metamorphosis. These results indicate that development of the individual components of the eye occurs at different times. Those of ectodermal origin appear early, providing a simple visual organ during larval life. By metamorphosis, the eye shows adult characteristics, including two types of photoreceptors, a rich choroid vascular supply and ocular structures involved in protecting, shaping, and moving the eye. J Morphol 233:31–42, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Cell lineages during ascidian embryogenesis are invariant. Developmental fates of larval mesodermal cells after metamorphosis are also invariant with regard to cell type of descendants. The present study traced developmental fates of larval endodermal cells after metamorphosis in Halocynthia roretzi by labeling each endodermal precursor blastomere of larval endoderm. Larval endodermal cells gave rise to various endodermal organs of juveniles: endostyle, branchial sac, peribranchial epithelium, digestive organs, peripharyngeal band, and dorsal tubercle. The boundaries between clones descended from early blastomeres did not correspond to the boundaries between adult endodermal organs. Although there is a regular projection from cleavage stage and larval stage to juvenile stage, this varies to some extent between individuals. This indicates that ascidian development is not entirely deterministic. We composed a fate map of adult endodermal organs in larval endoderm based on a statistical analysis of many individual cases. Interestingly, the topographic position of each prospective region in the fate map was similar to that of the adult organ, indicating that marked rearrangement of the positions of endodermal cells does not occur during metamorphosis. These findings suggest that fate specification in endoderm cells during metamorphosis is likely to be a position-dependent rather than a deterministic and lineage-based process. Received: 16 June 1999 / Accepted: 16 August 1999  相似文献   

6.
Drosophila uses different olfactory organs at different developmental stages. The larval and adult olfactory organs are morphologically dissimilar and have different developmental origins: the antenno-maxillary complex (AMC), which houses the larval olfactory organ, is histolyzed during metamorphosis; the third antennal segment—the principal adult olfactory organ—derives from an imaginal disc. A screen for genes expressed in both larval and adult olfactory organs, but in relatively few other tissues, has been carried out. Seven enhancer trap lines showing reporter gene expression in both the larval AMC and in certain subsets of the adult antenna are described. The antennal staining pattern of one line shows a striking change over the first few days of adult life, with a time course comparable to that of the development of sexual maturity. A pronounced sexual dimorphism in antennal staining pattern is seen in another line. Some staining patterns resemble the patterns of certain classes of antennal sensilla; others show expression restricted to only a small number of cells. Some lines also show expression associated with other chemosensory organs at either the larval or adult stage, including the maxillary palps, labellum, and anterior wing margin. One line, which also shows staining in the male reproductive tract, is male sterile. The significance of these results is considered in terms of (1) the molecular organization of the olfactory system; (2) the recruitment of olfactory genes for use in two developmental contexts; (3) the sharing of genes among different sensory modalities; (4) the role of olfaction in sexual behavior; and (5) posteclosional changes in the olfactory system. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
Drosophila uses different olfactory organs at different developmental stages. The larval and adult olfactory organs are morphologically dissimilar and have different developmental origins: the antenno-maxillary complex (AMC), which houses the larval olfactory organ, is histolyzed during metamorphosis; the third antennal segment--the principal adult olfactory organ--derives from an imaginal disc. A screen for genes expressed in both larval and adult olfactory organs, but in relatively few other tissues, has been carried out. Seven enhancer trap lines showing reporter gene expression in both the larval AMC and in certain subsets of the adult antenna are described. The antennal staining pattern of one line shows a striking change over the first few days of adult life, with a time course comparable to that of the development of sexual maturity. A pronounced sexual dimorphism in antennal staining pattern is seen in another line. Some staining patterns resemble the patterns of certain classes of antennal sensilla; others show expression restricted to only a small number of cells. Some lines also show expression associated with other chemosensory organs at either the larval or adult stage, including the maxillary palps, labellum, and anterior wing margin. One line, which also shows staining in the male reproductive tract, is male sterile. The significance of these results is considered in terms of (1) the molecular organization of the olfactory system; (2) the recruitment of olfactory genes for use in two developmental contexts; (3) the sharing of genes among different sensory modalities; (4) the role of olfaction in sexual behavior; and (5) posteclosional changes in the olfactory system.  相似文献   

8.
This article studies the morphological remodeling of olfactory organs in the fire salamander (Salamandridae, Caudata), from the larval stages of ontogeny to the adult and throughout the course of the annual cycle. The fire salamander exhibits adaptations to the aquatic environment during premetamorphic life and terrestrial adaptations after metamorphosis. During adulthood, the annual activity of this species is divided into three seasonal periods: a breeding period, a nonbreeding period, and hibernation. We observed significant differences in morphology of olfactory organs between developmental stages as well as between each period within the annual cycle. For the first time in caudates, we examined the morphology of olfactory organs during the winter period (wintering larvae, hibernating adults). The results show that the remodeling of olfactory organs during the life of the fire salamander occurs both on macro- and micromorphological levels. Macromorphological ontogenetic variability includes the shape of the main olfactory chamber (MOC) and the distribution of olfactory epithelium (OE) in the MOC and in the vomeronasal organ (VNO). In larvae, the vomeronasal epithelium (VNE) is in a separate cavity, while in the post-metamorphic stages of ontogeny, the VNE occurs in the diverticulum of the MOC. In adult fire salamanders, both olfactory organs are most developed during the breeding season and reduced during hibernation. The VNE and OE in the MOC are also reduced during hibernation. Micro-morphological changes included different types/subtypes of olfactory receptor neurons (ORNs) in the OE in particular stages of ontogeny and periods within the annual cycle, for example, ciliate ORNs are present in the VNE only in the larval stages and giant ORNs occur only in nonbreeding adults. Also, there was a variable set of types of olfactory supporting cells in the VNO of the fire salamander during pre- and postmetamorphic life stages.  相似文献   

9.
The location and arrangement of the pancreatic endocrine tissue in larval and adult Geotria australis (Geotriidae) differ markedly from those exhibited by the comparable stages of Northern Hemisphere lampreys (Petromyzontidae). In larval Geotria australis, the main zones of islet proliferation are located laterally between the oesophagus and the inner edge of the two large intestinal diverticula unique to this species rather than dorsal and ventral to the oesophagus. In adult Geotria australis, the islet follicles are closely packed into a single discrete capsule which could be easily removed surgically, rather than into cranial, intermediate, and caudal cords. The differences in the adult can be related to a lack of involvement of the bile duct in islet formation during metamorphosis. While B cells were found in both larval and adult islet follicles, the PI acidophilic cells and argyrophilic cells, which appeared respectively at stages 3 and 4 in metamorphosis, were present in all adult stages.  相似文献   

10.
11.
We have analyzed morphological changes affecting the lympho-hemopoietic organs of the anadromous sea lamprey, Petromyzon marinus throughout its life span. For this analysis, ammocoetes (2–4 years), premetamorphosing lampreys (nearly 5 years), metamorphosing lampreys, macrophtalmia stages (young adults) and parasitic adults (nearly 7 years) were used. The principal lympho-hemopoietic organs in the ammocoete are typhlosole, larval opisthonephros and nephros-associated adipose tissue. After metamorphosis, these organs degenerate, and their lympho-hemopoietic tissue is replaced by dense connective tissue. The supraneural body and to a lesser degree, the definitive opisthonephros, are the main blood-forming organs in adult lampreys. During larval life, lympho-hemopoietic cells appear in the branchial area, associated with pharyngeal epithelium. These loci are not morphologically homologous to the thymus gland of jawed vertebrates. These results are discussed, with special emphasis on the importance of cell microenvironments in eluciding changes in different blood-forming loci throughout the life cycle and their significance for the lamprey's immune capacity.  相似文献   

12.
This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage.  相似文献   

13.
Electron microscopy was used to follow the transformation of the endostyle to a thyroid gland in the anadromous sea lamprey, Petromyzon marinus L., throughout metamorphosis (stages 1–7). Transformation of the larval (ammocoete) endostyle begins at the first signs of external change (stages 1–2), and the adult form of the gland is reached by stage 5. Only slight modifications of the gland accompany further development to the end of metamorphosis. Development of the thyroid gland involves degeneration, proliferation, and reorganization of the cells in the endostyle, and changes in their fine structure. Ultrastructural changes during early stages are most obvious in the type 1 cells that make up the shrinking glandular tracts, and involves the accumulation of cytoplasmic microfilaments and a variety of cytoplasmic inclusions. The glandular tracts and their cells gradually disappear through autolysis and, apparently, through phagocytosis by neighboring epithelial cells and macrophages. Although the fine structure of the type 2, 3, 4, and 5 cells is not altered in the early stages, by stage 3, many of these cells become either vacuolated, undergo autolysis, or are extruded. Phagocytosis of some of each of these cell types likely occurs. Thyroid follicles are first observed during stage 4. Some of their lumina seem to arise from the accumulation of material in intercellular spaces and from vacuoles among cell clusters. Other lumina may represent a portion of the original lumen of the endostyle. Many follicles appear to be comprised of cells with cytological characteristics similar to those of larval cell types 3 and 2c. Some of the other larval cell types, such as type 5, may also be involved. In young adult lampreys follicles are composed of cuboidal to columnar cells that lack the dilated cisternae of rough endoplasmic reticulum seen in follicular cells of higher vertebrates. Dense collagenous connective tissue surrounding the follicles contains relatively few blood vessels. The transformation process described may have some relevance to our understanding of the development and evolution of the vertebrate thyroid gland.  相似文献   

14.
Nearly all vertebrates possess an olfactory organ but the vomeronasal organ is a synapomorphy for tetrapods. Nevertheless, it has been lost in several groups of tetrapods, including aquatic and marine animals. The present study examines the development of the olfactory and vomeronasal organs in two terrestrial anurans that exhibit different developmental modes. This study compares the development of the olfactory and vomeronasal organs in metamorphic anurans that exhibit an aquatic larva (Bufo americanus) and directly developing anurans that have eliminated the tadpole (Eleutherodactylus coqui). The olfactory epithelium in larval B. americanus is divided into dorsal and ventral branches in the rostral and mid-nasal regions. The larval olfactory pattern in E. coqui has been eliminated. Ontogeny of the olfactory system in E. coqui embryos starts to vary substantially from the larval pattern around the time of operculum development, the temporal period when the larval stage is hypothesized to have been eliminated. The nasal anatomy of the two frogs does not appear morphologically similar until the late stages of embryogenesis in E. coqui and the terminal portion of metamorphosis in B. americanus. Both species and their respective developing offspring, aquatic tadpoles and terrestrial egg/embryos, possess a vomeronasal organ. The vomeronasal organ develops at mid-embryogenesis in E. coqui and during the middle of the larval period in B. americanus, which is relatively late for neobatrachians. Development of the vomeronasal organ in both frogs is linked to the developmental pattern of the olfactory system. This study supports the hypothesis that the most recent common ancestor of tetrapods possessed a vomeronasal organ and was aquatic, and that the vomeronasal organ was retained in the Amphibia, but lost in some other groups of tetrapods, including aquatic and marine animals.  相似文献   

15.
The number of mucous, club, and granular cells in the epidermis, and the number of rows of subcutaneous adipose cells, as well as the thickness of the epidermis and the dermal collagen layer, have been recorded for the larval and metamorphosing stages of the anadromous parasitic lamprey, Lampetra fluviatilis, and for the larval, metamorphosing, and adult stages of the nonparasitic lamprey, Lampetra planeri. In L. fluviatilis, the mucous cells predominated in all stages but were more abundant in fully metamorphosed individuals than in larvae. During metamorphosis, the number of granular cells increased continuously, whereas the club cells showed little change. Although lampreys do not feed during metamorphosis, there was an increase in the thickness of the epidermis and in the dermal collagen sheath; the latter increase probably foreshadows the increase in activity by the adults. Simultaneously, there is a reduction in the subcutaneous fat layer, which can be attributed to mobilization of lipid as an energy source. Changes similar to those just described for L. fluviatilis were also found in metamorphosing L. planeri. However, the pattern altered markedly during adult stages in this nonparasitic species. There were marked declines in the number of cells, in the thickness of the epidermis, in the width of the collagen sheath, and in the quantity of subcutaneous fat.  相似文献   

16.
Jungblut, L.D., Pozzi, A.G. and Paz, D.A. 2010. Larval development and metamorphosis of the olfactory and vomeronasal organs in the toad Rhinella (Bufo) arenarum (Hensel, 1867). — Acta Zoologica (Stockholm) 92 : 305–315. The olfactory and the vomeronasal system are the two major chemosensory systems found in terrestrial vertebrates. Among tetrapods, amphibians are unique in having an aquatic larval stage, followed by metamorphosis to a terrestrial adult. In the present work, we studied the histological development of the olfactory and vomeronasal organ and associated multicellular glands of the toad Rhinella (Bufo) arenarum, from early poshatching larva to postmetamorphic toadlets. As in other bufonids, the olfactory epithelium of R. arenarum in larvae is divided into dorsal and ventral branches in the rostral and mid‐nasal regions. At metamorphic climax, the larval pattern changes drastically and the adult olfactory configuration develops. Bowman’s glands appear in the olfactory epithelium of R. arenarum at the onset of metamorphic climax. The vomeronasal epithelium develops early in larval development in R. arenarum, around the time of operculum development. Interestingly, a novel sensory epithelium develops in the floor of the principal chamber of R. arenarum at metamorphic climax. This novel sensory epithelium resembles larval sensory epithelium lacking Bowman’s glands, and suggests that these animals would be able to sense not only air‐borne, but also water‐borne odors during their adult terrestrial life.  相似文献   

17.
The general morphology of the gills is similar in larval (ammocoetes) and parasitic adult sea lampreys, Petromyzon marinus, despite different methods of ventilation necessitated by their feeding habits. The gill lamellae are supported by randomly-distributed pillar cells which enclose blood spaces and collagen columns. The distribution of these cells in lampreys is different from that of higher fishes and it may be inefficient for respiratory exchange. The presence of cytoplasmic microfilaments suggests that these cells have the ability to reduce the lamellar blood spaces through contraction. Marginal channels at the tips of the lamellae are lined only by endothelial cells. The thickness of the water-blood pathway in lampreys falls within the range described for higher fishes, with the most efficient gas exchange likely occurring at the lamellar tips where only a single layer of epithelial cells is present. The abrupt increase in height of the epithelium near the lamellar bases in adults, compared to the gradual transition in height along the lamellae in ammocoetes, is perhaps reflective of higher oxygen requirements during the parasitic stage. The consistent appearance of wide, lateral intercellular spaces within the respiratory epithelium of lampreys indicates possible involvement of these spaces in transport. Mucous secretion appears to be an important function of the superficial platelet cells in ammocoetes. “Mitochondria-rich” and “mitochondria-poor” superficial cells are observed in both ammocoetes and adults, with the mitochondria-rich cells more prevalent toward the lamellar bases. The possibility that at least some of these cells may be involved in absorption is discussed. Mitochondria-rich cells in the interlamellar region are morphologically different in ammocoetes and adults but all possess an abundance of smooth endoplasmic reticulum and hence resemble “chloride cells” of higher fishes. The similarity of these cells in the parasitic adult lamprey to chloride cells of marine fishes may reflect the potential of the adult lamprey to osmoregulate in salt water. A scarcity of these cells in ammocoetes and their resemblance to chloride cells in freshwater fishes may reflect the restriction of larval lampreys to a freshwater habitat.  相似文献   

18.
The events in the transformation of the intestine of the larval lamprey into the adult intestine were followed through the seven (1–7) stages of metamorphosis in anadromous Petromyzon marinus L. Light and electron-microscope observations demonstrated that the processes of degeneration, differentiation, and proliferation are involved in the transformation. In the anterior intestine, degeneration of cells and the extrusion of others into the lumen results in the disappearance of secretory (zymogen) cells and the decline in numbers of endocrine and ciliated cells. Larval absorptive cells, with a prominent brush border, are believed to dedifferentiate into unspecialized columnar cells with few microvilli. Degeneration and removal of cells occurs by both autophagy and heterography and cells extruded into the lumen in the anterior intestine are phagocytosed by epithelial cells of the posterior intestine. The loss of epithelial cells during transformation results in the folding and degradation of parts of the basal lamina and in an extensive widening of the lateral intercellular spaces in all parts of the intestine. As metamorphosis is a nontrophic period of the lamprey life cycle, the possible morphological effects of starvation on the intestinal epithelium are discussed. The development of longitudinal folds is a consequence of the events of metamorphic transformation of the intestinal mucosa. Although an interaction between the epithelium and the underlying tissues is believed to be importent, the actual mechanism of fold development is unknown. The intestinal epithelium of adult lampreys develops from surviving cells of the larval (primary) epithelium. Unlike the situation in amphibians, there does not appear to be a group (nest) of undifferentiated larval cells which differentiate into the adult (secondary) epithelium. Instead, in lampreys, columnar cells that persist through the degradative processes seem to be the source of absorptive and ciliated cells and probably are responsible for mucous and secretory cells. Preliminary observations indicate that the intestinal epithelium of feeding adults is specialized into an anterior region which liberates a secretion, absorbs lipid, and possesses the machinery for ion transport. A posterior region absorbs lipid, secretes mucus, and likely is involved in some protein absorption.  相似文献   

19.
Using morphometric and cytochemical techniques we have described changes taking place in the fat body cells during three different stages of development. The cell number remains constant at about 2200 cells during larval life and then decreases gradually and continuously throughout metamorphosis and the first 3 days of the adult stage until no more cells can be observed. Cell size increases rapidly during the larval period and decreases steadily during metamorphosis and adult stage. The size of the nuclei increases during the larval instars and decreases during the pupal interval. The change in nuclear size is correlated with the amount of DNA present throughout development implying the nuclear DNA is synthesized during the larval period and degraded gradually during metamorphosis. The cell size changes are due in large part to accumulation or loss of reserve substances: lipid droplets, glycogen deposits and protein granules. During metamorphosis the amount of lipid decreases slightly whereas glycogen experiences two loss cycles. The protein granules in the form of lysosomes continue to increase in amount during the first day of metamorphosis because of a short period of massive autophagy. Then the lysosomes decrease in amount throughout the remainder of metamorphosis. The lysosomes stain positively for lipofuscin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号