首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Life sciences》1994,55(16):PL307-PL312
Retinoids, especially all-trans retinoic acid (RA), have been shown to inhibit the differentiation of preadipose cells. It is important to human health, especially to obesity, that the regulatory system for the differentiation of adipocytes is well defined. Previously, we have shown that retinoic acid receptor (RAR) γ2 gene expression is up-regulated by RA in 3T3-L1 preadipose cells. In this study, the RAR system was dissected and the RA-regulated function in 3T3-L1 cells was assigned to one given receptor. We used three synthetic retinoids; (1) Ro 41–5253, a selective RAR α antagonist, (2) Ch 55, an RAR α, β and γ agonist, and (3) Am 80, an RAR α and β agonist, which has less affinity to RAR γ. Ro 41–5253 reverted RA-induced inhibition of the differentiation of 3T3-L1 cells. However, there was no significant reversion in RA-induced RAR γ mRNA level by treatment with Ro 41–5253. In the case of RAR agonists, both Am 80 and Ch 55 strongly inhibited the differentiation of 3T3-L1 cells. However, Am 80 weakly increased RAR γ mRNA content less than did Ch 55. These findings suggest, that RAR α is involved in the prevention of adipose differentiation by RA in 3T3-L1 cells. Moreover, there seems no causal relationship between the prevention of adipose differentiation by RA and the up-regulation of RAR γ2 gene expression by RA in 3T3-L1 cells. We have shown the functional heterogeneity of RA action through different RARs in 3T3-L1 cells.  相似文献   

2.
Calcitonin gene-related peptide (CGRP), expressed predominantly in F9 embryonal carcinoma cells, is both a potent chemotactic agent and an autocrine growth factor for these cells. We analyzed the effect of retinoic acid (RA)-induced differentiation of F9 cells into primitive parietal endoderm-like cells, on CGRP production and the CGRP responsiveness of these cells. Poly(A) RNA extracted from F9 cells and analysed by Northern blotting and hybridization with a CGRP probe showed a specific band of about 1200 bases corresponding to mature CGRP mRNA. This band was not detected in F9 cells treated for 6 days with RA (differentiated primitive parietal endoderm-like cells) or in PYS cells (established parietal endoderm-like cell line). During RA-induced differentiation of F9 cells, CGRP mRNA levels fell within 24 h after treatment and were almost undetectable after 2 days. RA treatment also reduced CGRP secretion by F9 cells; the effect was maximal at 3 days and remained stable thereafter. Similarly, RA rapidly reduced adenylate cyclase responsiveness to chicken CGRP (cCGRP) and human CGRP (hCGRP). An 80% fall in cAMP release into the culture medium in the presence of CGRP was observed after 24 h of RA treatment. These results demonstrate that RA rapidly abolishes the CGRP autocrine system involved in the proliferation of F9 cells, at the same time inducing their differentiation into primitive parietal endoderm. They point to the interaction between retinoic acid and growth factors in the regulation of cell proliferation and differentiation. J. Cell. Biochem. 64:447–457. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Breast cancer is the most common malignancy in women and the appearance of distant metastases produces the death in 98% of cases. The retinoic acid receptor β (RARβ) is not expressed in 50% of invasive breast carcinoma compared with normal tissue and it has been associated with lymph node metastasis. Our hypothesis is that RARβ protein participates in the metastatic process. T47D and MCF7 breast cancer cell lines were used to perform viability assay, immunobloting, migration assays, RNA interference and immunofluorescence. Administration of retinoic acid (RA) in breast cancer cells induced RARβ gene expression that was greatest after 72 hrs with a concentration 1 μM. High concentrations of RA increased the expression of RARβ causing an inhibition of the 60% in cell migration and significantly decreased the expression of migration‐related proteins [moesin, c‐Src and focal adhesion kinase (FAK)]. The treatment with RARα and RARγ agonists did not affect the cell migration. On the contrary, the addition of the selective retinoid RARβ‐agonist (BMS453) significantly reduced cell migration comparable to RA inhibition. When RARβ gene silencing was performed, the RA failed to significantly inhibit migration and resulted ineffective to reduce moesin, c‐Src and FAK expressions. RARβ is necessary to inhibit migration induced by RA in breast cancer cells modulating the expression of proteins involved in cell migration.  相似文献   

4.
All-trans retinoic acid (ATRA) is a widely used differentiation drug that can effectively induce osteogenic differentiation of osteosarcoma cells, but the underlying mechanism remains elusive, which limits the clinical application for ATRA in osteosarcoma patients. In this study, we identified E2F1 as a novel regulator involved in ATRA-induced osteogenic differentiation of osteosarcoma cells. We observed that osteosarcoma cells are coupled with individual differences in the expression levels of E2F1 in patients, and E2F1 impairs ATRA-induced differentiation of osteosarcoma cells. Moreover, remarkable anti-proliferative and differentiation-inducing effects of ATRA treatment are only observed in E2F1 low to negative expressed primary osteosarcoma cultures. These results strongly suggested that E2F1 may serve as a potent indicator for the effectiveness of ATRA treatment in osteosarcoma. Interestingly, E2F1 is found to downregulate retinoic acid receptor α (RARα), a key factor determines the effectiveness of ATRA. E2F1 specifically binds to RARα and promotes its ubiquitination-mediated degradation; as a consequence, RARα-mediated differentiation is inhibited in osteosarcoma. Therefore, our studies present E2F1 as a potent biomarker, as well as a therapeutic target for ATRA-based differentiation therapeutics, and raise the hope of using differentiation-based approaches for osteosarcoma patients.  相似文献   

5.
In order to gain a better understanding on the possible role of retinoic acid (RA) on human GH secretion, we have characterized the expression of its nuclear receptors in somatotropic adenoma cell extracts. By immunoblotting with rabbit polyclonal antibodies directed against RARα, β, and γ and RXRα and β, we could only detect the presence of RARα and RXRα proteins. The predominant expression of RXRα was confirmed at the mRNA level by Northern and slot-blot analysis. When then investigated the effect of RA on GH synthesis in cell culture of adenomatous somatotrophs. In cultured cells, RA (1 μM) stimulated GH secretion, increased intracellular GH content and GH mRNA levels within 72 h, suggesting a modulation of GH synthesis by RA. J. Cell. Biochem 65:25–31. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Retinoic acid (RA), the active metabolite of vitamin A, functions through nuclear receptors, one of which is the retinoic acid receptor (RAR). Though the RAR is essential for various aspects of vertebrate development, little is known about the role of RAR in nonchordate invertebrates. Here, we examined the potential role of an invertebrate RAR in mediating chemotropic effects of retinoic acid. The RAR of the protostome Lymnaea stagnalis is present in the growth cones of regenerating cultured motorneurons, and a synthetic RAR agonist (EC23), was able to mimic the effects of retinoic acid in inducing growth cone turning. We also examined the ability of the natural retinoids, all‐trans RA and 9‐cis RA, as well as the synthetic RAR agonists, to disrupt embryonic development in Lymnaea. Developmental defects included delays in embryo hatching, arrested eye, and shell development, as well as more severe abnormalities such as halted development. Developmental defects induced by some (but not all) synthetic RAR agonists were found to mimic those induced by addition of high concentrations of the natural retinoid isomers. These pharmacological data support a possible physiological role for the RAR in axon guidance and embryonic development of an invertebrate protostome species.  相似文献   

7.
8.
目的构建携带大鼠视黄酸核受体γ(retinoic acid receptor γ,RARγ)的重组腺病毒,为研究RAR3,在骨髓间充质干细胞(mesenchymal stem cells,MSCs)成神经分化中的作用奠定基础。方法体外扩增大鼠础研基因,将其定向克隆至腺病毒穿梭质粒pAd Trace—TOX构建重组质粒pAdTrace—RARγ,并在BJ5183菌中与骨架质粒pAd Easy-1重组获得腺病毒载体pad—RARγ,Pac I酶切后转染HEK293细胞包装腺病毒。腺病毒Ad—RARγ感染大鼠MSCs,Real—time PCR和Western印迹检测RARγ的表达。结果PCR,酶切及测序均证实础研正确克隆至腺病毒质粒载体中,Ad—RARγ对MSCs感染率达60%~70%,并明显增强础研基因和蛋白的表达。结论成功构建携带RARγ的重组腺病毒,并具有上调大鼠MSCsRA脚基因和蛋白表达的功能。  相似文献   

9.
10.
11.
A role for retinoic acid in regulating the regeneration of deer antlers   总被引:14,自引:0,他引:14  
Deer antlers are the only mammalian organs that can be repeatedly regenerated; each year, these complex structures are shed and then regrow to be used for display and fighting. To date, the molecular mechanisms controlling antler regeneration are not well understood. Vitamin A and its derivatives, retinoic acids, play important roles in embryonic skeletal development. Here, we provide several lines of evidence consistent with retinoids playing a functional role in controlling cellular differentiation during bone formation in the regenerating antler. Three receptors (alpha, beta, gamma) for both the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families show distinct patterns of expression in the growing antler tip, the site of endochondral ossification. RAR alpha and RXR beta are expressed in skin ("velvet") and the underlying perichondrium. In cartilage, which is vascularised, RXR beta is specifically expressed in chondrocytes, which express type II collagen, and RAR alpha in perivascular cells, which also express type I collagen, a marker of the osteoblast phenotype. High-performance liquid chromatography analysis shows significant amounts of Vitamin A (retinol) in antler tissues at all stages of differentiation. The metabolites all-trans-RA and 4-oxo-RA are found in skin, perichondrium, cartilage, bone, and periosteum. The RXR ligand, 9-cis-RA, is found in perichondrium, mineralised cartilage, and bone. To further define sites of RA synthesis in antler, we immunolocalised retinaldehyde dehydrogenase type 2 (RALDH-2), a major retinoic acid-generating enzyme. RALDH-2 is expressed in the skin and perichondrium and in perivascular cells in cartilage, although chondroprogenitors and chondrocytes express very low levels. At sites of bone formation, differentiated osteoblasts which express the bone-specific protein osteocalcin express high levels of RALDH2. The effect of RA on antler cell differentiation was studied in vitro; all-trans-RA inhibits expression of the chondrocyte phenotype, an effect that is blocked by addition of the RAR antagonist Ro41-5253. In monolayer cultures of mesenchymal progenitor cells, all-trans-RA increases the expression of alkaline phosphatase, a marker of the osteoblastic phenotype. In summary, this study has shown that antler tissues contain endogenous retinoids, including 9-cis RA, and the enzyme RALDH2 that generates RA. Sites of RA synthesis in antler correspond closely with the localisation of cells which express receptors for these ligands and which respond to the effects of RA.  相似文献   

12.
The F9 murine embryonal carcinoma (EC) cell line, a well established model system for the study of retinoic acid (RA)-induced differentiation, differentiates into cells resembling three types of extra-embryonic endoderm (primitive, parietal and visceral), depending on the culture conditions and RA concentration used. A number of previously identified genes are differentially expressed during this process and serve as markers for the different endodermal cell types. Differentiation is also accompanied by a decreased rate of proliferation and an apoptotic response. Using homologous recombination, we have disrupted both alleles of the retinoid X receptor (RXR) alpha gene in F9 cells to investigate its role in mediating these responses. The loss of RXRalpha expression impaired the morphological differentiation of F9 EC cells into primitive and parietal endoderm, but has little effect on visceral endodermal differentiation. Concomitantly the inducibility of most primitive and parietal endoderm differentiation-specific genes was impaired, while several genes upregulated during visceral endodermal differentiation were induced normally. We also demonstrate that RXRalpha is required for both the anti-proliferative and apoptotic responses in RA-treated F9 cells. Additionally, we provide further evidence that retinoic acid receptor (RAR)-RXR heterodimers are the functional units transducing the effects of retinoids in F9 cells.  相似文献   

13.
Differentiation of embryonic and adult myogenic progenitors undergoes a complex series of cell rearrangements and specification events which are controlled by distinct gene regulatory networks. Delineation of the molecular mechanisms that regulate skeletal muscle specification and formation should be important for understanding congenital myopathies and muscular degenerative diseases. Retinoic acid (RA) signaling plays an important role in development. However, the role of RA signaling in adult myogenic progenitors is poorly understood. Here, we investigate the role of RA signaling in regulating myogenic differentiation of myoblastic progenitor cells. Using the mouse myoblast progenitor C2C12 line as a model, we have found that the endogenous expression of most RAR and RXR isotypes is readily detected. While the nuclear receptor co-repressors are highly expressed, two of the three nuclear receptor co-activators and the enzymes involved in RA synthesis are expressed at low level or undetectable, suggesting that the RA signaling pathway may be repressed in myogenic progenitors. Using the α-myosin heavy chain promoter-driven reporter (MyHC-GLuc), we have demonstrated that either ATRA or 9CRA is able to effectively induce myogenic differentiation, which can be synergistically enhanced when both ATRA and 9CRA are used. Upon ATRA and 9CRA treatment of C2C12 cells the expression of late myogenic markers significantly increases. We have further shown that adenovirus-mediated exogenous expression of RARα and/or RXRα is able to effectively induce myogenic differentiation in a ligand-independent fashion. Morphologically, ATRA- and 9CRA-treated C2C12 cells exhibit elongated cell body and become multi-nucleated myoblasts, and even form myoblast fusion. Ultrastructural analysis under transmission electron microscope reveals that RA-treated myogenic progenitor cells exhibit an abundant presence of muscle fibers. Therefore, our results strongly suggest that RA signaling may play an important role in regulating myogenic differentiation.  相似文献   

14.
Retinoic acid receptor (RAR) α and γ mRNAs were constitutively expressed in B16 melanoma cells with or without retinoic acid (RA) treatment. RARβ mRNA, however, was significantly expressed only after exposure to RA. Induction of RARβ by RA occurred within 1 h and was not inhibited by cycloheximide (i.e., did not require new protein synthesis). All three RAR mRNA levels were dramatically decreased with 8-bromo-cyclic AMP treatment and could not be rescued by addition of RA. Analysis of RARγ revealed that this decrease occurred within 1 h of exposure to 8-bromo-cyclic AMP and was not blocked by simultaneous treatment with cycloheximide. The stability of RARγ mRNA was not altered by cyclic AMP treatment. Nuclear extracts from 8-bromo-cyclic AMP-treated cells showed a large decrease in protein binding to a retinoic acid response element (RARE) oligonucleotide compared to control cells. This correlated with a marked reduction of RA-stimulated RARE-reporter gene activity in transfected cells which were treated with cyclic AMP. Pretreatment of B16 cells with cyclic AMP prior to RA addition dramatically reduced induction of PKCα, an early marker of RA-induced cell differentiation. Thus, cyclic AMP can antagonize the action of RA most likely via its ability to inhibit RAR expression. © 1996 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
18.
19.
Objective: This study was designed to determine when peroxisome proliferator‐activated receptor γ (PPARγ) is expressed in developing fetal adipose tissue and stromal‐vascular adipose precursor cells derived from adipose tissue. In addition we examined developing tissue for CCAAT/enhancer‐binding protein β (C/EBPβ) expression to see if it was correlated with PPARγ expression. Pituitary function and hormones involved with differentiation (dexamethasone and retinoic acid) were also tested for their effects on PPARγ expression to determine if hormones known to affect differentiation also effect PPARγ expression in vivo and in cell culture. Research Methods and Procedures: Developing subcutaneous adipose tissues from the dorsal region of the fetal pig were collected at different gestation times and assayed using Western blot analysis to determine levels of PPARγ and C/EBPβ. Hypophysectomy was performed on 75‐day pig fetuses and tissue samples were then taken at 105 days for Western blot analysis. Adipose tissue was also taken from postnatal pigs to isolate stromal‐vascular (S‐V) cells. These adipose precursor cells were grown in culture and samples were taken for Western blot analysis to determine expression levels of PPARγ. Results: Our results indicate that PPARγ is expressed as early as 50 days of fetal development in adipose tissue and continues through 105 days. Expression of PPARγ was found to be significantly enhanced in adipose tissue from hypophysectomized fetuses at 105 days of fetal development (p < 0.05). C/EBPβ was not found in 50‐ or 75‐day fetal tissues and was found only at low levels in 105‐day tissues. C/EBPβ was not found in hypophysectomized (hypoxed) 105‐day tissue where PPARγ was elevated. S‐V cells freshly isolated from adipose tissue of 5‐ to 7‐day postnatal pigs showed the expression of PPARγ1. When S‐V cells were cultured, both PPARγ1 and 2 were expressed after the first day and continued as cells differentiated. High concentrations of retinoic acid decreased PPARγ expression in early S‐V cultures (p < 0.05). Discussion: Our data indicate that PPARγ is expressed in fetal adipose tissue very early before distinct fat cells are observed and can be expressed without the expression of C/EBPβ. The increase in PPARγ expression after hypophysectomy may explain the increase in fat cell size under these conditions. Adipose precursor cells (S‐V cells) from 5‐ to 7‐day postnatal pigs also express PPARγ in the tissue before being induced to differentiate in culture. Thus S‐V cells from newborn pig adipose tissue are probably more advanced in development than the 3T3‐L1 cell model. S‐V cells may be in a state where PPARγ and C/EBPα are expressed but new signals or vascularization are needed before cells are fully committed and lipid filling begins.  相似文献   

20.
Chondrocyte proliferation and differentiation is a fundamental process during hard palatogenesis. Excessive retinoic acid (RA), the biologically most active metabolite of vitamin A, has been reported to adversely affect chondrogenesis. The aim of this study was to investigate the mechanisms underlying RA‐induced chondrocyte differentiation by using human fetal palatal chondrocytes (hFPCs) aging about 9 weeks of amenorrhea. RA treatment inhibited proliferation and induced apoptosis in hFPCs. Alkaline phosphatase activity assay, quantitative alcian blue staining, and real‐time PCR analysis revealed that RA treatment stimulated hFPCs to undergo maturation and terminal differentiation, as demonstrated by decreased chondrogenic markers and increased osteogenic markers. Further studies demonstrated that RA treatment increased Wnt/β‐catenin signaling, as demonstrated by Wnt/β‐catenin target gene expression analysis and a luciferase‐based β‐catenin–activated reporter assay. To address the role of Wnt/β‐catenin signaling, we treated hFPCs with Dickkopf‐related protein 1, an extracellular inhibitor of Wnt/β‐catenin signaling, and the observed all‐trans retinoic acid–mediated increases in nuclear accumulation of β‐catenin, alkaline phosphatase activity, and type I collagen mRNA were attenuated, suggesting that RA modulated Wnt signaling at ligand–receptor level. In summary, excessive all‐trans retinoic acid inhibited proliferation and promoted ossification of hFPCs by upregulation of Wnt/β‐catenin signaling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号