首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined patterns of variation in the mineral content of the wing skeleton of the Mexican free-tailed bat, Tadarida brasiliensis. We ashed humeri, radii, metacarpals II-V, and phalanges of digit III, and quantified mineralization differences among elements at specific ages, and ontogenetically for each element. The most mineralized elements are the humerus and the radius, followed by the metacarpals, of which the third and fifth are the most mineralized. The proximal and middle phalanges of the third digit exhibit the lowest mineral content, and the distal phalanges have no mineral content according to our ashing protocol. Histological examination shows a thin (< 10 μm) shell of unmineralized osteoid surrounding a cartilaginous core in distal phalanges. Mineral content of each bone increases linearly with age during post-natal development, but there are differences in the rate and extent of this increase among the different elements.
The mineralizaton differences we observed parallel substantially different bone loading patterns found in different parts of the wing in other studies. The humerus and radius are subjected to large torsional loads during flight, while the metacarpals and phalanges experience dorsoventral bending. The high mineral content of the humerus and radius and the low mineral content of the metacarpals and phalanges may resist torsion proximally and promote bending distally. Furthermore, the decrease in mineral content along the wing's proximodistal axis decreases bone mass disproportionately at the wing tips, where the energetic cost of accelerating and decelerating limb mass is greatest.  相似文献   

2.
The forelimbs, along with the crania, are an essential part of the prey‐killing apparatus in cats. Linear morphometrics of the forelimbs were used to determine the morphological differences between felids that specialize on large prey, small prey, or mixed prey. We also compared the scaling of felid forelimbs to those of canids to test whether prey capture strategies affect forelimb scaling. Results suggest that large prey specialists have relatively robust forelimbs when compared with smaller prey specialists. This includes relatively more robust humeri and radii, relatively larger distal ends of the humerus, and relatively larger articular areas of the humerus and radius. Large prey specialists also had relatively longer olecranon processes of the ulna and wider proximal paws. These characters are all important for subduing large prey while the cat positions itself for the killing bite. Small prey specialists have relatively longer distal limb elements for swift prey capture, and mixed prey specialists had intermediate values with relatively more robust metacarpals. Arboreal felids also had more robust limbs. They had relatively longer proximal phalanges for better grip while climbing, and a relatively short brachial index (radius to humerus ratio). Additionally, we found that felids and canids differ in forelimb scaling, which emphasizes the dual use of forelimbs for locomotion and prey capture in felids. This morphometric technique worked well to separate prey‐size preference in felids, but did not work as well to separate locomotor groups, as scansorial and terrestrial felids were not clearly distinguished. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
It has previously been reported that brachiating primates, particularly gibbons, are characterized by distinctively straight forelimb long bones, yet no hypotheses have been proposed to explain why straight limb bones may be adaptive to suspensory locomotion. This study explores quantitatively the curvature of the long bones in 13 species of anthropoid primates and analyzes the functional consequences of curvature in biomechanical terms. These analyses demonstrate that, whereas the humeri of gibbons and spider monkeys are functionally less curved than those of other taxa, the ulnae of brachiators are neither more nor less curved than those of other anthropoids, and the gibbon radius is far more curved than would be predicted from body size alone. The humerus is likely significantly less curved in brachiators because of its torsion-dominated loading regime and the greatly increased stress magnitude developed in torsionally loaded curved beams. The large curvature of the radius is localized in the region of attachment of the supinator muscle. Analysis presented here of muscle mass allometry in catarrhines demonstrates that gibbons are characterized by an extremely massive supinator, and the large radial curvature is therefore most likely due to forearm muscle mechanics. This study also demonstrates that the overall pattern of limb bone curvature for anthropoids is distinct from the pattern reported for mammals as a whole. This distinctive scaling relationship may be related to the increased length of the limb bones of primates in comparison to other mammals.  相似文献   

4.
Flying vertebrates change the shapes of their wings during the upstroke, thereby decreasing wing surface area and bringing the wings closer to the body than during downstroke. These, and other wing deformations, might reduce the inertial cost of the upstroke compared with what it would be if the wings remained fully extended. However, wing deformations themselves entail energetic costs that could exceed any inertial energy savings. Using a model that incorporates detailed three-dimensional wing kinematics, we estimated the inertial cost of flapping flight for six bat species spanning a 40-fold range of body masses. We estimate that folding and unfolding comprises roughly 44 per cent of the inertial cost, but that the total inertial cost is only approximately 65 per cent of what it would be if the wing remained extended and rigid throughout the wingbeat cycle. Folding and unfolding occurred mostly during the upstroke; hence, our model suggests inertial cost of the upstroke is not less than that of downstroke. The cost of accelerating the metacarpals and phalanges accounted for around 44 per cent of inertial costs, although those elements constitute only 12 per cent of wing weight. This highlights the energetic benefit afforded to bats by the decreased mineralization of the distal wing bones.  相似文献   

5.
The partial skeleton of a young adult Geotrypus antiquus (de Blainville 1840) from the Upper Oligocene (MP 28) found in Enspel comprises the skull with both mandibles, distal ends of both scapulae, left clavicula, humeri, ulnae and radii of both sides, various elements of the hand, some vertebrae, ribs, and the left femur. For the first time, the previously postulated association between dentition and postcranial elements can be confirmed. The skeleton exhibits strong adaptations for a subterranean life, similar to modern fossorial moles. The humerus is wide with a large pectoral process. The wing-like greater and lesser tuberosities, teres tubercle, and distal epicondylus are clearly developed. The metacarpals and phalanges are broad and stout. There are several sesamoid bones in the broad digging hand, including a prepollex (os falciforme). The preserved bones allowed the forelimb of G. antiquus to be reconstructed. Previous finds of G. antiquus have mainly been from France, with a few specimens from Switzerland and southern Germany. The specimen from Enspel is the northernmost record. A cladistic analysis, based on the matrix of Sánchez-Villagra et al. (Cladistics 22:59?C88, 2006), confirms the basal position of Geotrypus within the Old World moles (Talpini).  相似文献   

6.
Development of locomotor activity is crucial in tetrapods. In birds, this development leads to different functions for hindlimbs and forelimbs. The emergence of walking and flying as very different complex behavior patterns only weeks after hatching provides an interesting case study in animal development. We measured the diaphyseal lengths and midshaft diameters of three wing bones (humerus, ulna, and carpometacarpus) and three leg bones (femur, tibiotarsus, and tarsometatarsus) of 79 juvenile (ages 0–42 days) and 13 adult glaucous‐winged gulls (Larus glaucescens), a semiprecocial species. From a suite of nine alternative mathematical models, we used information‐theoretic criteria to determine the best model(s) for length and diameter of each bone as a function of age; that is, we determined the model(s) that obtained the best tradeoff between the minimized sum of squared residuals and the number of parameters used to fit the model. The Janoschek and Holling III models best described bone growth, with at least one of these models yielding an R2 ≥ 0.94 for every dimension except tarsometatarsus diameter (R2 = 0.87). We used the best growth models to construct accurate allometric comparisons of the bones. Early maximal absolute growth rates characterize the humerus, femur, and tarsometatarsus, bones that assume adult‐type support functions relatively early during juvenile development. Leg bone lengths exhibit more rapid but less sustained relative growth than wing bone lengths. Wing bone diameters are initially smaller than leg bone diameters, although this relationship is reversed by fledging. Wing bones and the femur approach adult length by fledging but continue to increase in diameter past fledging; the tibiotarsus and tarsometatarsus approach both adult length and diameter by fledging. In short, the pattern of bone growth in this semiprecocial species reflects the changing behavioral needs of the developing organism. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
This study examines the allometric scaling relationships of the cetacean humerus, radius, and ulna. Bone lengths and diameters were measured for 20 species of odontocete and three species of mysticete cetaceans, representing eight of the nine extant cetacean families. The scaling of individual bone proportions (bone length vs. cranio-caudal diameter, bone length vs. dorso-ventral diameter), and of individual bone dimensions against estimated body mass, are compared to models of geometric and elastic similarity. The geometric similarity model describes the scaling relationship of bone length vs. cranio-caudal diameter and body mass vs. cranio-caudal diameter for the humerus only; geometric similarity also describes the scaling relationship of body mass vs. bone length for all three bones. None of the scaling relationships fits the elastic similarity model. The scaling relationships of bone length vs. dorso-ventral diameter for all three bones, and bone length vs. cranio-caudal diameter for the radius and ulna, exhibit negative allometry, indicating that large bones are less robust than small bones. Negative allometry of structural support elements has not been previously described for terrestrial mammals or plants. The high relative swimming speeds of small delphinids may generate sufficient stresses to require more robust bones relative to those of larger whales. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Studies of directional asymmetry in the human upper limb have extensively examined bones of the arm, forearm, and hand, but have rarely considered the clavicle. Physiologically, the clavicle is an integrated element of the upper limb, transmitting loads to the axial skeleton and supporting the distal bones. However, clavicles develop in a manner that is unique among the bones of the upper limb. Previous studies have indicated that the clavicle has a right-biased asymmetry in diaphyseal breadth, as in humeri, radii, ulnae, and metacarpals, but unlike these other elements, a left-biased length asymmetry. Few studies have assessed how clavicular asymmetry relates to these other bones of the upper limb. Bilateral directional asymmetry of the clavicle is examined in relation to the humerus in a large, geographically diverse human sample, comparing lengths and diaphyseal breadths. Dimensions were converted into percentage directional (%DA) and absolute (%AA) asymmetries. Results indicate that humans have same-side %DA bias in the clavicles and humeri, and contralateral length %DA between these elements. Diaphyseal breadths in both clavicles and humeri are more asymmetric-both in direction and amount-than lengths. Differences in diaphyseal asymmetry are shown to relate to variation in physical activities among groups, but a relationship between activity and length asymmetry is not supported. This further supports previous research, which suggests different degrees of sensitivity to loading between diaphyseal breadths and maximum lengths of long bones. Differences in lateralized behavior and the potential effects of different bone development are examined as possible influences on the patterns observed among human groups.  相似文献   

9.
Most analyses on allometry of long bones in terrestrial mammals have focused on dimensional allometry, relating external bone measurements either to each other or to body mass. In this article, an analysis of long bone mass to body mass in 64 different species of mammals, spanning three orders of magnitude in body mass, is presented. As previously reported from analyses on total skeletal mass to body mass in terrestrial vertebrates, the masses of most appendicular bones scale with significant positive allometry. These include the pectoral and pelvic girdles, humerus, radius+ulna, and forelimb. Total hindlimb mass and the masses of individual hindlimb bones (femur, tibia, and metatarsus) scale isometrically. Metapodial mass correlates more poorly with body mass than the girdles or any of the long bones. Metapodial mass probably reflects locomotor behavior to a greater extent than do the long bones. Long bone mass in small mammals (<50 kg) scales with significantly greater positive allometry than bone mass in large (>50 kg) mammals, probably because of the proportionally shorter long bones of large mammals as a means of preserving resistance to bending forces at large body sizes. The positive allometric scaling of the skeleton in terrestrial animals has implications for the maximal size attainable, and it is possible that the largest sauropod dinosaurs approached this limit.  相似文献   

10.
The long bones of 72 individuals of extant platyrrhines, belonging to 17 species (11 genera) were studied by regressions of length, diameters and curvature. Cross-sectional shapes at midshaft and axial and bending strength indicators were also calculated. Results show that forelimb bones scale faster than hindlimb bones, for both length and diameters. Curvature scales faster in the femur than in other bones. Strength indicators showed a high variability in the relative importance of axial and bending loadings. Results are consistent with field observations of locomotor behaviour, mainly as regards quadrupedalism versus suspensory locomotion.  相似文献   

11.
Structural and mechanical indicators of limb specialization in primates   总被引:5,自引:0,他引:5  
The structural mechanics of femora and humeri from primates representing a wide spectrum of habitual locomotor activities were examined to determine how cross-sectional properties vary with functional specializations of the extremities. Average bending rigidities of the midshaft of humerus and femur were measured in 60 individuals of four nonhuman primate species (Macaca nemestrina, Macaca fascicularis, Presbytis cristata, Hylobates lar) using single-beam photon absorptiometry. Linear regression analyses of the loge transformed data were used to assess the relative usage of the forelimb and hindlimb in propulsion and weight bearing, and to evaluate deviations from generalized mammalian quadrupedalism. The results suggest that average bending rigidities of the humerus and femur in primates reflect the extent to which the forelimb and hindlimb are used differently in locomotion; deviations of average bending rigidity from geometric similarity indicate functional variations from generalized mammalian quadrupedalism and the ratio of humeral to femoral bending rigidity can be used to identify trends towards hindlimb or forelimb dominance in locomotion and can be employed in general to determine how the limb was used.  相似文献   

12.
Abstract. Although the latitudinal gradient of species richness for mammals in North America is well documented, few investigators have quantified the relationship in South America. We examined the pattern in North and South America, at two spatial scales (2.5° and 5°) for each of two sampling methods (quadrats and latitudinal bands). A scale effect was evident for quadrats but not for bands. Significant linear relationships between species richness and latitude were found for three faunal groups: all mammals, nonvolant species, and bats. Effects of area confound the latitudinal relationship. By statistically removing such effects, we found that the latitudinal gradient is not an artifact of the species-area relationship, and that the latitudinal gradients for North and South America were statistically indistinguishable. Our data suggest that both faunal subgroups, nonvolant species and bats, contributed substantially to the overall mammalian pattern. Further, multiple regression analyses showed that only latitude is a necessary variable to explain bat richness; for nonvolant species, in addition to latitude, area and longitude may be important.  相似文献   

13.
Forelimb proportions have been used to infer locomotor adaptation in Australopithecus afarensis. However, little is known about proportions among individual forelimb segments in extant or fossil hominoids. The partial A. afarensis skeleton A.L. 438-1 and the more complete skeleton A.L. 288-1 provide the opportunity to assess relative length of the arm, forearm, wrist, and palm. We compare scaling relationships between pairs of forelimb bones of extant hominoids and A. afarensis, and length of individual forelimb elements to a body size surrogate. Hylobatids, and to a lesser extent orangutans, have the longest forelimb bones relative to size, although the carpus varies little among taxa, perhaps due to functional constraints of the wrist. Pan species are unique in having long metacarpals relative to ulnar length, demonstrating that they probably differ from the common chimp-human ancestor, and also that developmental mechanisms can be altered to results in differential growth of individual forelimb segments. A. afarensis has no forelimb bones that are significantly longer than those of humans for its size. It falls within the range of variation seen in modern humans for all comparisons relative to size, but appears to differ from the typical human brachial index due to a slightly shorter humerus and/or slightly longer ulna. It has short metacarpals like humans only among hominoids. Thus, while Pan may have elongated its metacarpus relative to ulnar length, A. afarensis may have reduced the length of its metacarpals and possibly its humerus relative to body size from the primitive condition.  相似文献   

14.
Birds have frequently evolved to exploit insular environments by becoming adapted to a terrestrial lifestyle and losing the ability to fly, usually via reducing the wings and pectoral girdle. The enigmatic flightless ibis Xenicibis xympithecus (Threskiornithidae) from the Quaternary of Jamaica provides a rare example of flight loss in ibises. We report on previously undescribed fossils of Xenicibis, and show that the wing differed radically from that of all other birds, flightless or volant. The metacarpus is elongate, grotesquely inflated and has extremely thick walls; phalanges are short and block-like; the radius is distally expanded; and the humerus is elongate. The furcula, coracoid and sternum are all well developed. We propose that the elongate forelimb and massive hand functioned in combat as a jointed club or flail. This hypothesis is supported by the morphology of the carpometacarpus, by features permitting rapid extension of the wing and by the presence of fractures in wing bones. Although other birds use the wings as weapons, none resemble Xenicibis, which represents a unique and extraordinary morphological solution to this functional problem. Xenicibis strikingly illustrates how similar selective pressures, acting on a similar starting point, can result in novel outcomes.  相似文献   

15.
Asymmetry was investigated in the forelimbs of 150 rhesus monkey (Macaca mulatta) skeletons using measurements of right and left humerii, radii, ulnae, second metacarpals, and femora. Seven of the ten forelimb dimensions were larger on the right than on the left side. Paired t-tests revealed that the mean of the right side was significantly larger than that for the left for two measurements of the ulna and two of the humerus. No measurement was significantly larger on the left than on the right side. These results indicate a small but significant asymmetry in the forelimb bones of rhesus monkeys and, as is the case for humans, the direction of asymmetry favors the right side. Our findings are consistent with an interpretation of hypertrophy of certain muscles and opens the question of whether rhesus monkeys preferentially use their right forelimbs for manipulative tasks that require manual dexterity, as is the case for humans. These forelimb skeletal asymmetries are discussed in light of the recent literature on cortical asymmetry and handedness in nonhuman primates.  相似文献   

16.
Giraffes have remarkably long and slender limb bones, but it is unknown how they grow with regard to body mass, sex, and neck length. In this study, we measured the length, mediolateral (ML) diameter, craniocaudal (CC) diameter and circumference of the humerus, radius, metacarpus, femur, tibia, and metatarsus in 10 fetuses, 21 females, and 23 males of known body masses. Allometric exponents were determined and compared. We found the average bone length increased from 340 ± 50 mm at birth to 700 ± 120 mm at maturity, while average diameters increased from 30 ± 3 to 70 ± 11 mm. Fetal bones increased with positive allometry in length (relative to body mass) and in diameter (relative to body mass and length). In postnatal giraffes bone lengths and diameters increased iso‐ or negatively allometric relative to increases in body mass, except for the humerus CC diameter which increased with positive allometry. Humerus circumference also increased with positive allometry, that of the radius and tibia isometrically and the femur and metapodials with negative allometry. Relative to increases in bone length, both the humerus and femur widened with positive allometry. In the distal limb bones, ML diameters increased isometrically (radius, metacarpus) or positively allometric (tibia, metatarsus) while the corresponding CC widths increased with negative allometry and isometrically, respectively. Except for the humerus and femur, exponents were not significantly different between corresponding front and hind limb segments. We concluded that the patterns of bone growth in males and females are identical. In fetuses, the growth of the appendicular skeleton is faster than it is after birth which is a pattern opposite to that reported for the neck. Allometric exponents seemed unremarkable compared to the few species described previously, and pointed to the importance of neck elongation rather than leg elongation during evolution. Nevertheless, the front limb bones and especially the humerus may show adaptation to behaviors such as drinking posture. J. Morphol. 276:503–516, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Bilateral asymmetry in the limb bones of the chimpanzee (Pan troglodytes)   总被引:1,自引:0,他引:1  
There is much debate in behavioral primatology on the existence of population-level handedness in chimpanzees. The presence or absence of functional laterality in great apes may shed light on the origins of human handedness and on the evolution of cerebral asymmetry. The plasticity of long bone diaphyses in response to mechanical loading allows the functional interpretation of differences in cross-sectional geometric. While left-right asymmetry in upper limb diaphyseal morphology is a known property in human populations, it remains relatively unexplored in apes. We studied bilateral asymmetry in 64 skeletons of wild-caught chimpanzee using the humerus, second metacarpal, and femur. The total subperiosteal area (TA) of the diaphyses was measured at 40% of maximum humeral length and at the midshaft of the metacarpals and femora using external silicone molds. Overall, the TA values of the left humeri were significantly greater than the right, indicating directional asymmetry. This effect was even greater when the magnitude of difference in TA between each pair of humeri was compared. The right second metacarpals showed a tendency toward greater area than did the left, but this did not reach statistical significance. The lack of asymmetry in the femur serves as a lower limb control, and suggests that the upper limb results are not a product of fluctuating asymmetry. These findings imply behavioral laterality in upper limb function in chimpanzees, and suggest a complementary relationship between precision and power.  相似文献   

18.
The transverse and sagittal diameters of the long bones were measured in a sample of 53 species of eutherian mammals and 36 species of birds. The scaling of the transverse and sagittal diameters of each bone to body mass was calculated. For each bone the ratio of sagittal/transverse diameter was calculated, as an expression of the cross-sectional shape of the bones. The distributions of the ratios were not significantly different from normality in all the avian bones and in the mammalian femur and tibia. In most cases, the mean of the distribution was significantly different from 1 (circular shape). The analysis shows that changes in the ratio can be caused by selective factors, considering the correlation predicted between the breaking moments and the radii, but at the same time the cross-sectional shape of mammalian and avian long bones may have a phylogenetic basis. Finally, the previous assumption of relationship between bone curvature and stress predictability, is also discussed.  相似文献   

19.
The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal eutherians were grossly similar to those of rats, and that humerus and radius LAR may have always played a significant role in forelimb and manus posture in small eutherian mammals.  相似文献   

20.
A partial right humerus has been recovered from the Early Cretaceous (Albian) Eumeralla Formation at Dinosaur Cove in south-eastern Australia. General morphology, size and the presence of a single epicondylar foramen (the entepicondylar) suggest that the bone is from a mammal or an advanced therapsid reptile. The humerus is similar in size, shape and torsion to the equivalent bone of extant and late Neogene echidnas (Tachyglossidae) but, contrary to the situation in extant monotremes, in which the ulna and radius articulate with a single, largely bulbous condyle, it bears a shallow, pulley-shaped (i.e. trochlear-form) ulnar articulation that is confluent ventro-laterally with the bulbous radial condyle. This form of ulnar articulation distinguishes this bone from the humeri of most advanced therapsids and members of several major groups of Mesozoic mammals, which have a condylar ulnar articulation, but parallels the situation found in therian mammals and in some other lineages of Mesozoic mammals. As in extant monotremes the distal humerus is greatly expanded transversely and humeral torsion is strong. Transverse expansion of the distal humerus is evident in the humeri of the fossorial docodont Haldanodon, highly-fossorial talpids and some clearly fossorial dicynodont therapsids, but the fossil shows greatest overall similarity to extant monotremes and it is possible that the peculiar elbow joint of extant monotremes evolved from a condition approximating that of the fossil. On the basis of comparisons with Mesozoic and Cainozoic mammalian taxa in which humeral morphology is known, the Dinosaur Cove humerus is tentatively attributed to a monotreme. However, several apparently primitive features of the bone exclude the animal concerned from the extant families Tachyglossidae and Ornithorhynchidae and suggest that, if it is a monotreme, it is a stem-group monotreme. Whatever, the animal's true affinity, the gross morphology of its humerus indicates considerable capacity for rotation-thrust digging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号