首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression and roles of Cl- channel ClC-5 in cell cycles of myeloid cells   总被引:1,自引:0,他引:1  
This study investigated the effect of exogenous nitric oxide (NO) on endothelial glucocorticoid receptor (GR) function. The NO donor diethylenetriamine NONOate (DETA, 50-500microM) caused concentration dependent nuclear localization of transfected chimeric green fluorescent protein GFP-GR and elevated expression of secreted alkaline phosphatase (SEAP) from a glucocorticoid response element (GRE) promoter construct in bovine aortic endothelial cells. Other weaker NO donors (S-nitroso-N-acetylpenicillamine and spermine NONOate) failed to induce GFP-GR nuclear localization, but all the NO donors activated GRE-SEAP expression, a response unaffected by the antioxidant N-acetyl-L-cysteine. Overall, exogenous NO from high concentration donors can directly activate GR, suggesting a potential feedback mechanism for NO to regulate endothelial inducible nitric oxide synthase (iNOS) expression.  相似文献   

2.
We examined whether nitric oxide (NO) inhibits prostanoid synthesis through actions on cyclooxygenase (COX) gene expression and activity. Bovine pulmonary artery endothelial cells were pretreated for 30 min with the NO donors 1 mM S-nitroso-N-acetylpenicillamine (SNAP), 0.5 mM sodium nitroprusside (SNP), or 0.2 microM spermine NONOate; controls included cells pretreated with either 1 mM N-acetyl-D-penicillamine or the NO synthase (NOS) inhibitor 1 mM N(G)-nitro-L-arginine methyl ester with and without addition of lipopolysaccharide (LPS; 0.1 microg/ml) for 8 h. COX-1 and COX-2 gene and protein expression were examined by RT-PCR and Western analysis, respectively; prostanoid measurements were made by gas chromatography-mass spectrometry, and COX activity was studied after a 30-min incubation with 30 microM arachidonic acid. LPS induced COX-2 gene and protein expression and caused an increase in COX activity and an eightfold increase in 6-keto-PGF(1alpha) release. LPS-stimulated COX-2 gene expression was decreased by approximately 50% by the NO donors. In contrast, LPS caused a significant reduction in COX-1 gene expression and treatment with NO donors had little effect. SNAP, SNP, and NONOate significantly suppressed LPS-stimulated COX activity and 6-keto-PGF(1alpha) release. Our data indicate that increased generation of NO attenuates LPS-stimulated COX-2 gene expression and activity, whereas inhibition of endogenous NOS has little effect.  相似文献   

3.
Two exogenous NO donors were used to act as substitutes for impaired endogenous nitric oxide (NO) production due to inhibition of NO synthase in rats. Six weeks' lasting inhibition of NO synthase by NG-nitro-L-arginine methyl ester (L-NAME) induced stabilized hypertension. Simultaneously administered isosorbide-5-mononitrate did not prevent the development of hypertension. Molsidomine, administered concomitantly with L-NAME, significantly attenuated the BP increase. However, BP was still found to be moderately increased compared to the initial values. Remarkable alterations in the geometry of the aorta, carotid and coronary artery found in NO-deficient hypertension were prevented in rats administered L-NAME plus molsidomine at the same time. In spite of 6 weeks' lasting inhibition of NOS, the NOS activators acetylcholine and bradykinin induced BP decrease; the maximum hypotensive value did not differ from the values recorded in the controls or in animals treated with L-NAME plus molsidomine. Notably enough, the hypotension was similar to that found in rats administered L-NAME alone for six weeks. After NO synthase inhibition, Isosorbide-5-mononitrate does not substitute and molsidomine substitute only partially the impaired endogenous NO production.  相似文献   

4.
Exogenous nitric oxide (NO) suppresses endothelium-derived NO production. We were interested in determining whether this is also the case in flow-induced endothelium-derived NO production. If so, then is the mechanism because of intracellular depletion of tetrahydrobiopterin [BH4; a cofactor of NO synthase (NOS)], which results in superoxide production by uncoupled NOS? Isolated canine femoral arteries were perfused with 100 microM S-nitroso-N-acetylpenicillamine (SNAP; an NO donor) and/or 64 microM BH4. Perfusion of SNAP suppressed flow-induced NO production, which was evaluated as a change in the slope of the linear relationship between perfusion rate and NO production rate (P < 0.02 vs. control; n = 7). Subsequent BH4 perfusion returned the slope to the control level. Concomitant perfusion of SNAP and BH4 retained the control-level NO production (n = 7). Concomitant perfusion of SNAP and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron; 1 mM; a membrane-permeable superoxide scavenger) also retained the control-level NO production (n = 7), whereas perfusion of Tiron after SNAP could not return the NO production to the control level (P < 0.02 vs. control; n = 7). We also found a significant decrease in BH4 concentration in the endothelial cells after SNAP perfusion. In conclusion, these results indicate that exogenous NO suppresses the flow-induced, endothelium-derived NO production by superoxide released from uncoupled NOS because of intracellular BH4 depletion.  相似文献   

5.
《Life sciences》1996,60(3):PL53-PL56
The effects of elevated glucose and aldose reductase inhibitor (ARI:ONO-2235) on nitric oxide (NO) production in cultured human umbilical endothelial cells (HUVEC) were evaluated. Aldose reductase and nitric oxide synthase(NOS) share NADPH as an obligate cofactor, therefore it is suggested that the enhanced of glucose flux (27.5 mM) by aldose reductase inhibited NO production by blunting NOS activity. However, the addition of ONO-2235 (100 μM) prevented the inhibition of [NO2] production. Since ARI decreases glucose-mediated inhibition of NO production in HUVEC, this agent might ameliorate endothelial function associated with diabetes.  相似文献   

6.
This study examined the notion that exogenous generation of nitric oxide (NO) modulates NOS gene expression and activity. Bovine pulmonary artery endothelial cells (BPAEC) were treated with the NO donors, 1 mM SNAP (S-nitroso-N-acetylpenicillamine), 0.5 mM SNP (sodium nitroprusside) or 0.2 microM NONOate (spermine NONOate) in medium 199 containing 2% FBS. Controls included untreated cells and cells exposed to 1 mM NAP (N-acetyl-D-penicillamine). NOS activity was assessed using a fibroblast-reporter cell assay; intracellular Ca2+ concentrations were assessed by Fura-2 microfluorometry; and NO release was measured by chemiluminescence. Constitutive endothelial (e) and inducible (i) NOS gene and protein expression were examined by northern and western blot analysis, respectively. Two hours exposure to either SNAP or NONOate caused a significant elevation in NO release from the endothelial cells (SNAP = 51.4 +/- 5.9; NONOate = 23.8 +/- 4.2; control = 14.5 +/- 2.8 microM); but A23187 (3 microM)-stimulated NO release was attenuated when compared to controls. Treatment with either SNAP or NONOate for 2 h also resulted in a significant increase in NOS activity in endothelial homogenates (SNAP = 23.6 +/- 2.5; NONOate= 29.8 +/- 7.7; control = 14.5 +/- 2.5fmol cGMP/microg per 10(6) cells). Exposure to SNAP and SNP, but not NONOate, for 1 h caused an increase in intracellular calcium. Between 4 and 8 h, SNAP and NONOate caused a 2- to 3-fold increase in eNOS, but not iNOS, gene (P < 0.05) and protein expression. NAP had little effect on either eNOS gene expression, activity or NO production. Our data indicate that exogenous generation of NO leads to a biphasic response in BPAEC, an early increase in intracellular Ca2+, and increases in NOS activity and NO release followed by increased expression of the eNOS gene, but not the iNOS gene. We conclude that eNOS gene expression and activity are regulated by a positive-feedback regulatory action of exogenous NO.  相似文献   

7.
Regulation of nitric oxide (NO) formation is critical to ensure maintenance of appropriate cellular concentrations of this labile, signaling molecule. This study investigated the role exogenous and endogenously produced NO have in feeding back to regulate NO synthesis in intact cells. Two NO donors inhibited activation of neuronal NO synthase (nNOS) in response to the muscarinic receptor agonist carbachol in Chinese hamster ovary (CHO) cells stably transfected with the M1 muscarinic receptor and nNOS. The presence of the NO scavenger [2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide · potassium salt] (C-PTIO) potentiated carbachol-induced activation of nNOS in transfected CHO cells. C-PTIO also potentiated nNOS activity in response to the Ca2+ ionophore ionomycin. In contrast, the NO scavenger oxyhemoglobin depressed carbachol- and ionomycin-induced NO formation. These discrepant results suggest that it is unlikely that endogenously produced NO induces feed back inhibition at the level of nNOS activation itself. Exogenous sources of NO inhibited carbachol-induced inositol phosphates formation. However, endogenously produced NO did not appear to feed back to regulate phosphoinositide hydrolysis as there was no difference in [3H]inositol phosphates formation between cells that do or do not express nNOS. There was also no change in carbachol-induced [3H]inositol phosphates formation in the presence or absence of a NOS inhibitor or the NO scavenger C-PTIO. A decrease in the carbachol-mediated transient Ca2+ peak was observed in cells that express nNOS as compared to cells lacking the enzyme, suggesting that endogenous NO might inhibit receptor mediated Ca2+ signaling. This conclusion, however, was not supported by the lack of ability of a NOS inhibitor to modulate carbachol-induced Ca2+ elevations. Taken together, these results highlight differences in the regulation of the nNOS activation cascade by endogenous vs. exogenous sources of NO.  相似文献   

8.
A nonselective inhibitor of cyclooxygenase (COX; high-dose aspirin) and a relatively selective inhibitor of inducible nitric oxide synthase (iNOS; aminoguanidine) have been found to inhibit development of diabetic retinopathy in animals, raising a possibility that NOS and COX play important roles in the development of retinopathy. In this study, the effects of hyperglycemia on retinal nitric oxide (NO) production and the COX-2 pathway, and the interrelationship of the NOS and COX-2 pathways in retina and retinal cells, were investigated using a general inhibitor of NOS [N(G)-nitro-l-arginine methyl ester (l-NAME)], specific inhibitors of iNOS [l-N(6)-(1-iminoethyl)lysine (l-NIL)] and COX-2 (NS-398), and aspirin and aminoguanidine. In vitro studies used a transformed retinal Müller (glial) cell line (rMC-1) and primary bovine retinal endothelial cells (BREC) incubated in 5 and 25 mM glucose with and without these inhibitors, and in vivo studies utilized retinas from experimentally diabetic rats (2 mo) treated or without aminoguanidine or aspirin. Retinal rMC-1 cells cultured in high glucose increased production of NO and prostaglandin E(2) (PGE(2)) and expression of iNOS and COX-2. Inhibition of NO production with l-NAME or l-NIL inhibited all of these abnormalities, as did aminoguanidine and aspirin. In contrast, inhibition of COX-2 with NS-398 blocked PGE(2) production but had no effect on NO or iNOS. In BREC, elevated glucose increased NO and PGE(2) significantly, whereas expression of iNOS and COX-2 was unchanged. Viability of rMC-1 cells or BREC in 25 mM glucose was significantly less than at 5 mM glucose, and this cell death was inhibited by l-NAME or NS-398 in both cell types and also by l-NIL in rMC-1 cells. Retinal homogenates from diabetic animals produced significantly greater than normal amounts of NO and PGE(2) and of iNOS and COX-2. Oral aminoguanidine and aspirin significantly inhibited all of these increases. The in vitro results suggest that the hyperglycemia-induced increase in NO in retinal Müller cells and endothelial cells increases production of cytotoxic prostaglandins via COX-2. iNOS seems to account for the increased production of NO in Müller cells but not in endothelial cells. We postulate that NOS and COX-2 act together to contribute to retinal cell death in diabetes and to the development of diabetic retinopathy and that inhibition of retinopathy by aminoguanidine or aspirin is due at least in part to inhibition of this NO/COX-2 axis.  相似文献   

9.
Endothelial cell nitric oxide synthase (NOS) is known to have a N-myristoylation consensus sequence. Such a consensus sequence is not evident in the macrophage, smooth muscle and neuronal NOS. A functional role for this N-terminal myristoylation is not clear yet. In the present study, we examined the effect of N-terminal myristoylation on the NOS activity determined by the conversion of L-[3H]arginine to L-[3H]citrulline and extracellular NO release determined by nitrite production in the conditioned medium from the COS-7 cells transfected with wild type bovine aortic endothelial cell (BAEC) NOS cDNA or nonmyristoylated BAEC-NOS mutant cDNA. NOS activity of wild type BAEC-NOS in COS-7 cells was localized in the particulate fraction and that of mutant NOS was in the cytosolic fraction. In contrast, nitrite production from COS-7 cells transfected with wild type BAEC-NOS cDNA was greater than that of mutant cDNA in a time dependent and a concentration dependent manner. These results suggest that membrane localization of NOS with myristoylation facilitates extracellular transport of NO and leads to enhanced NO signaling on the vascular smooth muscle cells and the intravascular blood cells including neutrophils, macrophages and platelets.  相似文献   

10.
《Life sciences》1993,53(14):PL229-PL234
The vasodilating effect of substance P (SP) at the microvascular level is endothelium-dependent. In the present study we evaluated whether SP activates nitric oxide (NO) production by venular endothelial cell. We evaluated NO activation by measuring cyclic GMP levels in cultured endothelial cells isolated from coronary postcapillary venules of bovine origin (CVEC). Our results indicate that 5 min exposure of CVEC to 10 nM SP doubled basal cyclic GMP levels. Cell treatment with the NO synthase inhibitor L-NMMA reduced the basal levels of cyclic GMP and abolished the effect of SP but did not modify the increase in cyclic GMP in response to exogenous NO. These data indicate that a) microvascular endothelium responds in an autocrine fashion to NO with increased cyclic GMP levels, b) SP activates cyclic GMP pathway through NO production.  相似文献   

11.
The long-term benefits of nitroglycerin therapy are limited by tolerance development. Understanding the precise nature of mechanisms underlying nitroglycerin-induced endothelial cell dysfunction may provide new strategies to prevent tolerance development. In this line, we tested interventions to prevent endothelial dysfunction in the setting of nitrate tolerance. When bovine aortic endothelial cells (BAECs) were continuously treated with nitric oxide (NO) donors, including nitroglycerin, over 2-3 days, basal production of nitrite and nitrate (NO(x)) was diminished. The diminished basal NO(x) levels were mitigated by intermittent treatment allowing an 8-h daily nitrate-free interval during the 2- to 3-day treatment period. Addition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin restored the basal levels of NO(x) that were decreased by continuous nitroglycerin treatment of BAECs. Apocynin caused significant improvement of increased mRNA and protein levels of endothelial nitric oxide synthase (eNOS) in BAECs given nitroglycerin continuously over the treatment period. Apocynin also reduced endothelial production of reactive oxygen species (ROS) after continuous nitroglycerin treatment. These results showed an essential similarity to the effects of a nitrate-free interval. Application of the NOS inhibitor N(omega)-nitro- l-arginine methyl ester caused a recovery effect on basal NO(x) and eNOS expression but was without effect on ROS levels in continuously NO donor-treated BAECs. In conclusion, the present study characterized abnormal features and functions of endothelial cells following continuous NO donor application. We suggest that inhibition of NADPH oxidase, by preventing NO donor-induced endothelial dysfunction, may represent a potential therapeutic strategy that confers protection from nitrate tolerance development.  相似文献   

12.
SPARC (secreted protein, acidic and rich in cysteine), also known as osteonectin, is an extracellular Ca+2-glycoprotein that inhibits the incorporation of [3H]-and delays the onset of S-phase in synchronized cultures of bovine aortic endothelial (BAE) cells. This effect appears not to be dependent on the functional properties of SPARC associated with changes in cell shape or inhibition of cell spreading. In this study we investigate the conditions under which cell cycle modulation occurs in different types of cells. Human umbilical vein endothelial cells, a transformed fetal BAE cell line, and bovine capillary endothelial cells exhibited a sensitivity to SPARC and a cationic peptide from a non-Ca+2-region of SPARC (peptide 2.1, 0.2—0.8 mM) similar to that observed in BAE cells. In contrast, human foreskin fibroblasts and fetal bovine ligament fibroblasts exhibited an increase in the incorporation of [3H]-in the presence of 25 μM—0.2 mM peptide 2.1; inhibition was observed at concentrations in excess of 0.4 mM. This biphasic modulation could be further localized to a sequence of 10 amino acids comprising the N-terminal half of peptide 2.1. A synthetic peptide from another cationic region of SPARC (peptide 2.3) increased [3H]-incorporation by BAE cells and fibroblasts in a dose-dependent manner. In endothelial cells, a stimulation of 50% was observed at a concentration of 0.01 mM; fibroblasts required ~ 100-fold more peptide 2.3 for levels of stimulation comparable to those obtained in endothelial cells. The observation that SPARC and unique SPARC peptides can differentially influence the growth of fibroblasts and endothelial cells in a concentration-dependent manner suggests that SPARC might regulate proliferation of specific cells during wound repair and remodeling. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Altered nitric oxide (NO) biosynthesis is thought to play a role in the initiation and progression of atherosclerosis and may contribute to increased risk seen in other cardiovascular diseases. It is hypothesized that altered NO bioavailability may result from an increase in endogenous NO synthase (NOS) inhibitors, asymmetric dimethly araginine (ADMA), and N(G)-monomethyl arginine, which are normally metabolized by dimethyarginine dimethylamine hydrolase (DDAH). Lipid hydroperoxides and their degradation products are generated during inflammation and oxidative stress and have been implicated in the pathogenesis of cardiovascular disorders. Here, we show that the lipid hydroperoxide degradation product 4-hydroxy-2-nonenal (4-HNE) causes a dose-dependent decrease in NO generation from bovine aortic endothelial cells, accompanied by a decrease in DDAH enzyme activity. The inhibitory effects of 4-HNE (50 microM) on endothelial NO production were partially reversed with L-Arg supplementation (1 mM). Overexpression of human DDAH-1 along with antioxidant supplementation completely restored endothelial NO production following exposure to 4-HNE (50 microM). These results demonstrate a critical role for the endogenous methylarginines in the pathogenesis of endothelial dysfunction. Because lipid hydroperoxides and their degradation products are known to be involved in atherosclerosis, modulation of DDAH and methylarginines may serve as a novel therapeutic target in the treatment of cardiovascular disorders associated with oxidative stress.  相似文献   

14.
Vascular endothelial growth factor (VEGF) is considered to be important in promotion of capillary growth in skeletal muscles exposed to increased activity. We studied its interactions with nitric oxide (NO) by examining the expression of endothelial NO synthase (NOS), VEGF, and VEGF receptor-2 (VEGFR-2) proteins in relation to capillary growth in rat extensor digitorum longus muscles electrically stimulated for 2, 4, or 7 days with and without NOS inhibition by N(omega)-nitro-L-arginine (L-NNA, 3 mg/day). Stimulation increased all proteins from 2 days onward, concomitantly with capillary proliferation (labeling for proliferating cell nuclear antigen). Capillary-to-fiber ratio was elevated by 25% after 7 days. Concurrent oral administration of L-NNA did not affect the increase in endothelial NOS but depressed its activity, as shown by increased blood pressure and decreased arteriolar diameters in 2-day-stimulated muscles. NOS inhibition eliminated the increased expression of VEGFR-2 and VEGF proteins in muscles stimulated for 2 and 4 days but not for 7 days. However, it depressed capillary proliferation and the increase in C/F at all time points. We conclude that, in stimulated muscles, NO, generated by activation of neuronal NOS by muscle activity or endothelial NOS by increased blood flow and capillary shear stress, may increase capillary proliferation in the early stages of stimulation through upregulation of VEGFR-2 and VEGF. With longer stimulation, capillary growth appears to require NO, and high levels of VEGF and VEGFR-2 may be contributing to maintenance of the increased capillary bed.  相似文献   

15.
Yamamoto M  Hara H  Adachi T 《FEBS letters》2001,505(2):296-300
Extracellular-superoxide dismutase (EC-SOD) is bound to the vascular endothelial cell surface with an affinity for heparan sulfate proteoglycan. The binding of EC-SOD to the human umbilical vein endothelial cell (HUVEC) and bovine aortic endothelial cell surface proteoglycans was significantly decreased by the incubation with S-nitroso-N-acetyl-DL-penicillamine (SNAP) and +/- -N-[(E)-4-ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexene-1-yl]-3-pyridine carboxamide (NOR4), potent nitric oxide (NO) donors. NO derived from lipopolysaccharide-stimulated J774 A-1 cells also decreased the binding of EC-SOD to HUVEC, and this decrease was blocked by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. SNAP and NOR4 also decreased the binding of EC-SOD to immobilized heparin. Furthermore, the decomposed derivatives of NO donors and sodium nitrite decreased the binding of EC-SOD. These observations suggest that excess NO produced in the inflammatory conditions decreases the binding of EC-SOD to the vascular endothelial cell surface, which results in a loss of the ability to protect the endothelial cell surface from oxidative stress.  相似文献   

16.
In airway diseases, smooth muscle cells can proliferate at exaggerated rates; thus, the identification of endogenous pathways that limit proliferative responses is important. Here we show that human airway smooth muscle express type I nitric oxide synthase (NOS), which results in inhibition of DNA synthesis and cell proliferation. In addition, superoxide dismutase (SOD), a cell-permeable mimetic that increases the biological half-life and therefore enhances the biological activity of endogenously released nitric oxide (NO), or NO-releasing drugs also greatly reduce DNA synthesis and cell proliferation. Observations in this study have important clinical implications: 1) NOS inhibition may exacerbate airway disease and 2) inhaled SOD/mimetics or NO/nitrovasodilators may be therapies for the treatment of asthma or chronic obliterative pulmonary disease.  相似文献   

17.
Nitric oxide and wound repair: role of cytokines?   总被引:5,自引:0,他引:5  
Wound healing involves platelets, inflammatory cells, fibroblasts, and epithelial cells. All of these cell types are capable of producing nitric oxide (NO), either constitutively or in response to inflammatory cytokines, through the activity of nitric oxide synthases (NOSs): eNOS (NOS3; endothelial NOS) and iNOS (NOS2; inducible NOS), respectively. Indeed, pharmacological inhibition or gene deletion of these enzymes impairs wound healing. The wound healing mechanisms that are triggered by NO appear to be diverse, involving inflammation, angiogenesis, and cell proliferation. All of these processes are controlled by defined cytokine cascades; in many cases, NO appears to modulate these cytokines. In this review, we summarize the history and present state of research on the role of NO in wound healing within the framework of modulation of cytokines.  相似文献   

18.
胰岛素促进血管内皮细胞产生一氧化氮的实验研究   总被引:4,自引:0,他引:4  
目的:探讨胰岛素对血管内皮细胞增殖、NO产生和NOS基因表达的影响。方法:培养牛主动脉内皮细胞,测定培养上清液中NO氧化产物NO2^-的水平并应用定量RT-PCR技术检测内皮细胞NOS mRNA的表达水平。结果:①胰岛素对大血管内皮细胞无细胞毒作用,也不影响细胞增殖;②在1-15μg/ml浓度范围内,胰岛素加强内皮细胞释放NO,且呈剂量依赖的方式,NOS特异性抑制剂L-NAME可阻抑之;③胰岛素轻度增加NOS mRNA表达水平,但无统计学意义。结论:胰岛素既不影响大血管内皮细胞增殖,也不影响内皮细胞NOS mRNA表达水平,但以剂量依赖的方式加强内皮细胞产生NO,推测其诱导NO产生的机制可能是通过酶活性的诱导,加速NO的合成。  相似文献   

19.
Nitric oxide (NO) synthesis is modulated by dimethylarginine dimethylaminohydrolase (DDAH) via metabolizing asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor. This study investigated whether glycosylated bovine serum albumin (GBSA) could impair NO synthesis by inhibition of DDAH expression and activity, and whether DDAH2 overexpression could reverse the impaired NO synthesis induced by GBSA in endothelial cells. Overexpression of DDAH2 gene was established by liposome-mediated gene transfection in ECV304 endothelial cell line. Cells were incubated with 1.70 mmol/L GBSA for 48h. And the expressions of DDAH1 and DDAH2, gene activities of DDAH and NOS in cells, as well as concentrations of ADMA and NO in media were assayed. The activity of DDAH and expression of DDAH2 gene but not DDAH1 gene were inhibited in endothelial cells after exposure to GBSA, whereas the concentrations of ADMA were increased concomitantly with the decrease of NOS activity in cells and NO production in media. Overexpression of DDAH2 gene could prevent the inhibition of DDAH activity induced by GBSA (0.55+/-0.02 vs 0.42+/-0.02U/g pro; n=3; P<0.05), decrease ADMA concentration (0.59+/-0.04 vs 1.13+/-0.11 micromol/L; n=3; P<0.01), and increase NOS activity and NO production (53.77+/-3.40 vs 34.59+/-2.57 micromol/L; P<0.05) compared with untransfected cells treated with GBSA. These results suggest that decreased DDAH activity and subsequent elevated endogenous ADMA are implicated in the inhibition of NO synthesis induced by GBSA, and overexpression of DDAH2 gene can prevent these changes in DDAH/ADMA/NOS/NO pathway of endothelial cells exposed to GBSA.  相似文献   

20.
Endogenous nitric oxide (NO) has recently been shown to affect cell cycle progression in the neural tube (NT) of the chick embryo. High NO levels trigger entry into S phase basally, while low NO levels facilitate mitosis apically. Here, we further explore the involvement of NO in determining cell numbers in the chick NT. In addition to the effect of short-term (6 h) NOS inhibition, we have observed a concomitant decrease in programmed cell death (PCD). Paradoxically, long-term (12 h) NOS inhibition caused an increase in PCD to compensate for the high proliferation rate under these conditions. Long-term treatment with a NO donor caused a decrease in S phase and increased PCD. The effects produced by the NO donor could be alleviated by folic acid that facilitated entry into S phase and prevented PCD. The effects produced by NOS inhibition (12 h) could be overcome by an embryo extract, used as a source of extracellular survival factors that enhanced proliferation and prevented PCD. Taken together, these data demonstrate that changing endogenous NO levels affect the balance between cell proliferation and PCD in NT of the developing chick embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号