首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sonic hedgehog (Shh) is a key signal protein in early embryological patterning of limb bud development. Its analog, Indian hedgehog (Ihh), primarily expressed during early cartilage development in prehypertrophic chondrocytes, regulates proliferation and suppresses terminal differentiation of postnatal growth plate (GP) chondrocytes. We report here for the first time that both Shh and Ihh mRNA are expressed in the GP of rapidly growing 6-week-old broiler-strain chickens. They are also expressed in other tissues such as articular chondrocytes, kidney, and bone. In situ hybridization and RT-PCR analyses reveal Shh in all zones of the GP, with peak expression in late hypertrophy. Using primary cultures of GP chondrocytes in serum-containing medium, we followed the patterns of Shh and Ihh mRNA expression as the cultures matured and mineralized. We find a cyclical expression of both hedgehog genes during the early period of culture development between day 10 and 14; when one is elevated, the other tended to be suppressed, suggesting that the two hedgehogs may play complementary roles during GP development. Retinoic acid (RA), a powerful modulator of gene expression in cell differentiation, stimulates GP chondrocytes toward terminal differentiation, enhancing mineral formation. We find that RA strongly suppresses Ihh, but enhances expression of Shh in this system. While Ihh suppresses maturation of GP chondrocytes to hypertrophy, we hypothesize that Shh acts to push these cells toward hypertrophy.  相似文献   

2.
The effect of retinoic acid (RA) on primary cultures of growth plate chondrocytes obtained from weight-bearing joints was examined. Chondrocytes were isolated from the tibial epiphysis of 6- to 8-week-old broiler-strain chickens and cultured in either serum-containing or serum-free media. RA was administered at low levels either transiently or continuously after the cells had become established in culture. Effects of RA on cellular protein levels, alkaline phosphatase (AP) activity, synthesis of proteoglycan (PG), matrix calcification, cellular morphology, synthesis of tissue-specific types of collagen, and level of matrix metalloproteinase (MMP) activity were explored. RA treatment generally increased AP activity, and stimulated mineral deposition, especially if present continuously. RA also caused a shift in cell morphology from spherical/polygonal to spindle-like. This occurred in conjunction with a change in the type of collagen synthesized: type X and II collagens were decreased, while synthesis of type I collagen was increased. There was also a marked increase in the activity of MMP. Contrasting effects of continuous RA treatment on cellular protein levels were seen: they were enhanced in serum-containing media, but decreased in serum-free HL-1 media. Levels of RA as low as 10 nM significantly inhibited PG synthesis and caused depletion in the levels of PG in the medium and cell-matrix layer. Thus, in these appendicular chondrocytes, RA suppressed chondrocytic (PG, cartilage-specific collagens) and enhanced osteoblastic phenotype (cell morphology, type I collagen, alkaline phosphatase, and mineralization). J. Cell. Biochem. 65:209–230. © 1997 Wiley-Liss, Inc.  相似文献   

3.
We report here a comparative study of the development and behavior of chondrocytes isolated from normal growth plate tissue, tibial dyschondroplasic lesions, and from articular cartilage. The objective of these studies was to determine whether the properties exhibited by chondrocytes in dysplasic lesions or in articular cartilage were due to their cellular phenotype, their environment, or both. We had previously analyzed the electrolytes and amino acid levels in the extracellular fluid of avian growth plate chondrocytes. Using these data, we constructed a culture medium (DATP5) in which growth plate cells essentially recapitulate their normal behavior in vivo. Here, we used DATP5 to examine the behavior of chondrocytes isolated from lesions of tibial dyschondroplasia (TD). We found that once isolated from lesion and grown in this supportive medium, dysplasic chondrocytes behaved essentially like normal growth plate cells. These findings suggest that the cause of TD is local factors operating in vivo to prevent these cells from developing normally. With respect to articular chondrocytes, our data indicate that they more closely retain normal protein and proteoglycan synthesis when grown in serum-free media. These cells readily induced mineral formation in vitro, both in the presence and absence of serum. However, in serum-containing media, mineralization was significantly enhanced when the cells were exposed to retinoic acid (RA) or osteogenic protein-1 (OP-1). Our studies support previous work indicating the presence of autocrine factors produced by articular chondrocytes in vivo that prevent mineralization and preserve matrix integrity. The lack of inhibitory factors and the presence of supporting factors are likely reasons for the induction of mineralization by articular chondrocytes in vitro.  相似文献   

4.
Matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling. In growth plate (GP) cartilage, extensive remodeling occurs at the calcification front. To study the potential involvement of MMPs in retinoic acid (RA) regulation of skeletal development, we studied the effect of all-trans-RA on MMPs levels in mineralizing chicken epiphyseal chondrocyte primary cultures. When treated for 4 day periods on days 10 and 17, RA increased levels of an ∼70 kDa gelatinase activity. The N-terminal sequence of the first 20 amino acid residues of the purified enzyme was identical to that deduced from chicken MMP-2 cDNA. Time-course studies indicated that RA elevated MMP-2 activity levels in the cultures within 16 h. This increase was inhibited by cycloheximide and was enhanced by forskolin. The increase in MMP-2 activity induced by RA was accompanied by an increase in MMP-2 mRNA levels and was abolished by treatment with cycloheximide. This upregulation of MMP levels by RA in GP chondrocytes is consistent with its effects on osteoblasts and osteosarcoma cells and opposite its inhibitory effects on fibroblasts and endothelial cells. It may well be related to the breakdown of the extracellular matrix in the GP and would be governed by the availability of RA at the calcification front where extensive vascularization also occurs. J. Cell. Biochem. 68:90–99, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Time- and dosage-dependent effects of 1,25(OH)(2)D(3) and 24,25(OH)(2)D(3) on primary cultures of pre- and post-confluent avian growth plate (GP) chondrocytes were examined. Cultures were grown in either a serum-containing culture medium designed to closely mimic normal GP extracellular fluid (DATP5) or a commercially available serum-free media (HL-1) frequently used for studying skeletal cells. Hoechst DNA, Lowry protein, proteoglycan (PG), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activity and calcium and phosphate mineral deposition in the extracellular matrix were measured. In preconfluent cultures grown in DATP5, physiological levels of 24,25(OH)(2)D(3) (0.10-10 nM) increased DNA, protein, and LDH activity significantly more than did 1,25(OH)(2)D(3) (0.01-1.0 nM). However, in HL-1, the reverse was true. Determining ratios of LDH and PG to DNA, protein, and each other, revealed that 1,25(OH)(2)D(3) specifically increased PG, whereas 24,25(OH)(2)D(3) increased LDH. Post-confluent cells were generally less responsive, especially to 24,25(OH)(2)D(3). The positive anabolic effects of 24,25(OH)(2)D(3) required serum-containing GP-fluid-like culture medium. In contrast, effects of 1,25(OH)(2)D(3) were most apparent in serum-free medium, but were still significant in serum-containing media. Administered to preconfluent cells in DATP5, 1,25(OH)(2)D(3) caused rapid, powerful, dosage-dependent inhibition of Ca(2+) and Pi deposition. The lowest level tested (0.01 nM) caused >70% inhibition during the initial stages of mineral deposition; higher levels of 1,25(OH)(2)D(3) caused progressively more profound and persistent reductions. In contrast, 24,25(OH)(2)D(3) increased mineral deposition 20-50%; it required >1 week, but the effects were specific, persistent, and largely dosage-independent. From a physiological perspective, these effects can be explained as follows: 1,25(OH)(2)D(3) levels rise in hypocalcemia; it stimulates gut absorption and releases Ca(2+) from bone to correct this deficiency. We now show that 1,25(OH)(2)D(3) also conserves Ca(2+) by inhibiting mineralization. The slow anabolic effects of 24,25(OH)(2)D(3)are consistent with its production under eucalcemic conditions which enable bone formation. These findings, which implicate serum-binding proteins and accumulation of PG in modulating accessibility of the metabolites to GP chondrocytes, also help explain some discrepancies previously reported in the literature.  相似文献   

6.
Conditions were defined for promoting cell growth, hypertrophy, and extracellular matrix mineralization of a culture system derived from embryonic chick vertebral chondrocytes. Ascorbic acid supplementation by itself led to the hypertrophic phenotype as assessed by respective 10- and 15-fold increases in alkaline phosphatase enzyme activity and type X synthesis. Maximal extracellular matrix mineralization was obtained, however, when cultures were grown in a nutrient-enriched medium supplemented with both ascorbic acid and 20 mM beta-glycerophosphate. Temporal studies over a 3-wk period showed a 3-4-fold increase in DNA accompanied by a nearly constant DNA to protein ratio. In this period, total collagen increased from 3 to 20% of the cell layer protein; total calcium and phosphorus contents increased 15-20-fold. Proteoglycan synthesis was maximal until day 12 but thereafter showed a fourfold decrease. In contrast, total collagen synthesis showed a greater than 10-fold increase until day 18, a result suggesting that collagen synthesis was replacing proteoglycan synthesis during cellular hypertrophy. Separate analysis of individual collagen types demonstrated a low level of type I collagen synthesis throughout the 21-d time course. Collagen types II and X synthesis increased during the first 2 wk of culture; thereafter, collagen type II synthesis decreased while collagen type X synthesis continued to rise. Type IX synthesis remained at undetectable levels throughout the time course. The levels of collagen types I, II, IX, and X mRNA and the large proteoglycan core protein mRNA paralleled their levels of synthesis, data indicating pretranslational control of synthesis. Ultrastructural examination revealed cellular and extracellular morphology similar to that for a developing hypertrophic phenotype in vivo. Chondrocytes in lacunae were surrounded by a well-formed extracellular matrix of randomly distributed collagen type II fibrils (approximately 20-nm diam) and extensive proteoglycan. Numerous vesicular structures could be detected. Cultures mineralized reproducibly and crystals were located in extracellular matrices, principally associated with collagen fibrils. There was no clear evidence of mineral association with extracellular vesicles. The mineral was composed of calcium and phosphorus on electron probe microanalysis and was identified as a very poorly crystalline hydroxyapatite on electron diffraction. In summary, these data suggest that this culture system consists of chondrocytes which undergo differentiation in vitro as assessed by their elevated levels of alkaline phosphatase and type X collagen and their ultrastructural appearance.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The biosynthesis of sulfated proteoglycan in vitro by rabbit articular chondrocytes in first passage monolayer culture maintained in fetal bovine serum (FBS) or in serum-free conditions was compared. Neosynthesized proteoglycan in the culture medium in the most dense fraction of an associative CsCl density gradient (fraction dAl) declined with increasing time under serum-free conditions, but not when cells were maintained in the presence of serum. After one day, the major peak of incorporated 35SO4 in medium fraction dAl eluted as a retarded peak (Kav 0.28) on Sepharose CL-2B, whether cells were maintained under serum-free or serum-containing conditions. The hydrodynamic size of proteoglycan monomer fraction dAlDl obtained after one day of exposure to serum-free culture media was smaller than dAlDl from serum-containing cultures. The hydrodynamic size of dAlDl obtained from serum-free culture media became even progressively smaller after 2 and 3 days' exposure to these conditions. Hydrodynamically small sulfated proteoglycans were identified in the cell-associated dAlDl fraction as early as one day after switching chondrocytes from serum-containing to serum-free medium. Culture medium fraction dAlDl from serum-free culture medium aggregated poorly when incubated with human hyaluronic acid (HA) in the presence of bovine link protein or when dialysed against bovine nasal cartilage proteoglycan aggregate. Proteoglycan monomer from serum-containing medium reaggregated more efficiently under both conditions. No change in the size of glycosaminoglycan chains was seen in the smaller proteoglycan subpopulations, nor was there any indication of marked changes in the glycosaminoglycan types.  相似文献   

8.
We previously showed that retinoic acid (RA) participates in the regulation of chondrocyte maturation during endochondral ossification, a process involving multiple developmental stages. To assess whether the responsiveness to RA treatment changes during chondrocyte maturation, immature chondrocytes were isolated from the caudal portion of Day 18-19 chick embryo sterna, a portion that remains cartilaginous through early postnatal life but ossifies with age. The immature cells were allowed to reach different stages of maturation by growth for different time in culture. Progression by the cells toward the mature phenotype during culture was confirmed by increases in average cell diameter, proteoglycan synthesis, and alkaline phosphatase (APase) activity. When developmentally immature passage 0 (PO) cultures were treated with RA (10-100 nM) for 72 h, the cells readily became fibroblastic, reduced drastically their proteoglycan synthesis, and failed to activate type X collagen gene expression. When older cultures (P1 and P2) were treated with RA, the cells acquired a characteristic epithelioid shape and increased their APase activity. Moreover, 5-10% of P1 cells and 20-25% of P2 cells activated type X collagen synthesis in response to RA. RA treatment markedly induced expression of the gene encoding the β isoform of retinoic acid receptor (RARβ) and also provoked a moderate 2.5-fold increase in RARα gene expression. A similar change in responsiveness to RA was observed during maturation in vivo. Chondrocytes were isolated from the cephalic portion of Day 10, 11, 13, and 16 chick embryo sterna, and were treated with different doses of RA (10-100 nM) for 72 h. The cells from the Day 10 sternum failed to activate type X collagen gene expression in response to RA. In contrast, with increasing age of the embryos, an increasing fraction of cells induced type X collagen gene expression in response to RA. We conclude that responsiveness to RA changes during the early stages of chondrocyte maturation and that maturation depends on interactions between exogenous retinoids and the endogenous developmental program of chondrocytes.  相似文献   

9.
Primary monolayers of rabbit articular chondrocytes synthesize high levels of type II collagen and proteoglycan. This capacity was used as a marker for the expression of the differentiated phenotype. Such cells were treated with 1 microgram/ml retinoic acid (RA) for 10 d to produce a modulated collagen phenotype devoid of type II and consisting of predominantly type I trimer and type III collagen. After transfer to secondary culture in the presence of RA, the stability of the RA-modulated phenotype was investigated by culture in the absence of RA. Little reexpression of type II collagen synthesis occurred in this period unless cultures were treated with 3 X 10(-6) M dihydrocytochalasin B to modify microfilament structures. Reexpression of the differentiated phenotype began between days 6-8 and was essentially complete by day 14. Substantial reexpression occurred by day 8 without a detectable increase in cell rounding. Colony formation, characteristic of primary chondrocytes, was infrequent even after reexpression was complete. These data suggest that the integrity of microfilament cytoskeletal structures can be a source of regulatory signals that mechanistically appear to be more proximal to phenotypic change than the overt changes in cell shape that accompany reexpression of subculture-modulated chondrocytes in agarose culture.  相似文献   

10.
Mechanical forces can stimulate the production of extracellular matrix molecules. We tested the efficacy of ultrasound to increase proteoglycan synthesis in bovine primary chondrocytes. The ultrasound-induced temperature rise was measured and its contribution to the synthesis was investigated using bare heat stimulus. Chondrocytes from five cellular isolations were exposed in triplicate to ultrasound (1 MHz, duty cycle 20%, pulse repetition frequency 1 kHz) at average intensity of 580 mW/cm2 for 10 minutes daily for 1-5 days. Temperature evolution was recorded during the sonication and corresponding temperature history was created using a controllable water bath. This exposure profile was used in 10-minute-long heat treatments of chondrocytes. Heat shock protein 70 (Hsp70) levels after one-time treatment to ultrasound and heat was analyzed by Western blotting, and proteoglycan synthesis was evaluated by 35S-sulfate incorporation. Ultrasound treatment did not induce Hsp70, while heat treatment caused a slight heat stress response. Proteoglycan synthesis was increased approximately 2-fold after 3-4 daily ultrasound stimulations, and remained at that level until day 5 in responsive cell isolates. However, chondrocytes from one donor cell isolation out of five remained non-responsive. Heat treatment alone did not increase proteoglycan synthesis. In conclusion, our study confirms that pulsed ultrasound stimulation can induce proteoglycan synthesis in chondrocytes.  相似文献   

11.
Pleiotrophin (PTN) is a secreted heparin-binding, developmentally regulated protein that is found in abundance in fetal, but not mature, cartilage. SDS-page and glycosaminoglycan (GAG) analysis of sulfate-radiolabeled proteoglycans isolated from the medium of mature cultured chondrocytes treated with PTN showed a threefold increase in the levels of proteoglycan synthesis. In contrast, in cultures of fetal chondrocytes, no changes in proteoglycan synthesis were observed. Thymidine incorporation experiments showed a dose-dependent decrease in proliferation of treated cells compared with control cultures, suggesting that pleiotrophin had an inhibitory effect on growth of chondrocytes. Neither FGF or heparin reversed the inhibitory effect of PTN. Capillary electrophoresis of chondroitinase ABC-digested proteoglycans isolated from mature chondrocytes showed 2-4-fold increases in the amounts of the 4S- and 6S-substituted GAG chains for the PTN-treated chondrocytes. Northern analysis showed a twofold upregulation in the mRNA levels of biglycan and collagen type II, but no difference in the message levels for decorin and aggrecan. These results establish that PTN inhibits cell proliferation, while stimulating the synthesis of proteoglycans in mature chondrocytes in vitro, suggesting that PTN may act directly or indirectly to regulate growth and proteoglycan synthesis in the developing matrix of fetal cartilage.  相似文献   

12.
During endochondral ossification, resting and proliferating chondrocytes mature into hypertrophic chondrocytes that initiate synthesis of type X collagen. The mechanisms regulating the differential expression of type X collagen gene were examined in confluent Day 12 secondary cultures of chick vertebral chondrocytes in monolayer treated with the vitamin A analog retinoic acid (RA). Preliminary results showed that major effects of RA on chondrocyte gene expression occurred between 24 and 48 h of treatment. Thus in subsequent experiments cultures were treated for 24, 30, 36, 42, 48, 72, 96, and 120 h. Total RNAs were isolated and analyzed by hybridization with 32P-labeled plasmid probes coding for five matrix macromolecules including type X collagen. We found that the steady-state levels of mRNAs for the large keratan sulfate/chondroitin sulfate proteoglycan (KS:CS-PG) core protein and type II collagen decreased several fold between 24 and 48 h of treatment compared to untreated cells, and remained low with further treatment. In sharp contrast, the level of type X collagen mRNA increased threefold by 42 h of treatment; thereafter it began to decrease and reached minimal levels by 72–120 h of treatment. The changes in steady-state mRNA levels during RA regimen paralleled similar changes in relative rates of protein synthesis. The transient up-regulation of type X collagen gene expression at 42 h of treatment was preceded by a five-fold increase in fibronectin gene expression, was followed by a several fold increase in type I collagen gene expression, and was accompanied by cell flattening and loss of the pericellular proteoglycan matrix. Thus, RA treatment leads to a unique biphasic modulation of type X collagen gene expression in maturing chondrocyte cultures. The underlying, RA-sensitive mechanisms effecting this modulation may reflect those normally regulating the differential expression of this collagen gene during endochondral ossification.  相似文献   

13.
The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of [35S]sulfate and [3H]glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on [35S]sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on [35S]sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased [3H]thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.  相似文献   

14.
We reported previously that a 32-36-kDa osteogenic protein purified from bovine bone matrix is composed of dimers of two members of the transforming growth factor (TGF)-beta superfamily: the bovine equivalent of human osteogenic protein-1 (OP-1) and bone morphogenetic protein-2a, BMP-2a (BMP-2). In the present study, we produced the recombinant human OP-1 (hOP-1) in mammalian cells as a processed mature disulfide-linked homodimer with an apparent molecular weight of 36,000. Examination of hOP-1 in the rat subcutaneous bone induction model demonstrated that hOP-1 was capable of inducing new bone formation with a specific activity comparable with that exhibited by highly purified bovine osteogenic protein preparations. The half-maximal bone-inducing activity of hOP-1 in combination with a rat collagen matrix preparation was 50-100 ng/25 mg of matrix as determined by the calcium content of day 12 implants. Evaluation of hOP-1 effects on cell growth and collagen synthesis in rat osteoblast-enriched bone cell cultures showed that both cell proliferation and collagen synthesis were stimulated in a dose-dependent manner and increased 3-fold in response to 40 ng of hOP-1/ml. Examination of the expression of markers characteristic of the osteoblast phenotype showed that hOP-1 specifically stimulated the induction of alkaline phosphatase (4-fold increase at 40 ng of hOP-1/ml), parathyroid hormone-mediated intracellular cAMP production (4-fold increase at 40 ng of hOP-1/ml), and osteocalcin synthesis (5-fold increase at 25 ng of hOP-1/ml). In long-term (11-17 day) cultures of osteoblasts in the presence of beta-glycerophosphate and L(+)-ascorbate, hOP-1 markedly increased the rate of mineralization as measured by the number of mineral nodules per well (20-fold increase at 20 ng of hOP-1/ml). Direct comparison of TGF-beta 1 and hOP-1 in these bone cell cultures indicated that, although both hOP-1 and TGF-beta 1 promoted cell proliferation and collagen synthesis, only hOP-1 was effective in specifically stimulating markers of the osteoblast phenotype.  相似文献   

15.
Monolayer cell cultures and cartilage tissue fragments have been used to examine the effects of hydrostatic fluid pressure (HFP) on the anabolic and catabolic functions of chondrocytes. In this study, bovine articular chondrocytes (bACs) were grown in porous three-dimensional (3-D) collagen sponges, to which constant or cyclic (0.015 Hz) HFP was applied at 2.8 MPa for up to 15 days. The effects of HFP were evaluated histologically, immunohistochemically, and by quantitative biochemical measures. Metachromatic matrix accumulated around the cells within the collagen sponges during the culture period. There was intense intracellular, pericellular, and extracellular immunoreactivity for collagen type II throughout the sponges in all groups. The incorporation of [(35)S]-sulfate into glycosaminoglycans (GAGs) was 1.3-fold greater with constant HFP and 1.4-fold greater with cyclic HFP than in the control at day 5 (P < 0.05). At day 15, the accumulation of sulfated-GAG was 3.1-fold greater with constant HFP and 2.7-fold with cyclic HFP than the control (0.01). Quantitative immunochemical analysis of the matrix showed significantly greater accumulation of chondroitin 4-sulfate proteoglycan (C 4-S PG), keratan sulfate proteoglycan (KS PG), and chondroitin proteoglycan (chondroitin PG) than the control (P < 0.01). With this novel HFP culture system, 2.8 MPa HFP stimulated synthesis of cartilage-specific matrix components in chondrocytes cultured in porous 3-D collagen sponges.  相似文献   

16.
17.
Treatment of Swarm rat chondrosarcoma chondrocytes for 3 days in media containing either non-recombinant pig or recombinant human insulin (1 micrograms/ml) increased the rate of proteoglycan synthesis approximately 6-fold compared with cells cultured in the absence of insulin. The concentrations of human and pig insulin that stimulated the cells to double their rate of proteoglycan synthesis were approximately 1 ng/ml and approximately 2 ng/ml respectively. Because physiological concentrations of insulin do not influence proteoglycan synthesis in non-transformed chondrocytes, the findings indicated a possible abnormality in the insulin-dependent regulation of the insulin receptor in these tumour cells. Like most cells, chondrosarcoma chondrocytes down-regulated their insulin receptors when incubated with insulin for 30 min. However, the number of plasma-membrane and intracellular insulin receptors did not decrease when the chondrocytes were exposed to insulin chronically for 4 days. Chondrocytes were cultured in media containing 2H-, 13C- and 15N-labelled amino acids, and the heavy-isotope density-shift method was used to investigate both the rate of degradation and the rate of synthesis of the insulin receptor. Although the rate of synthesis of the receptor was slightly faster in the insulin-treated cultures, as assessed by a slightly faster rate of appearance of the 'heavy' receptor, the rate of degradation of the receptor was slower in the insulin-treated cultures. The half-lives for the 'light' receptors were approx. 18 h and 10 h for chondrocytes cultured in insulin-containing and insulin-free media respectively. These studies in vitro indicate that the apparent up-regulation of insulin receptors that occurs in this transformed cell upon long-term exposure to insulin is primarily the result of a decreased rate of receptor degradation.  相似文献   

18.
It has been previously shown that undifferentiated stage 23 to 24 chick limb bud mesenchymal cells can be maintained in culture under conditions which promote chondrogenesis. As the chondrocytes mature in vitro, their proteoglycan synthesis progresses through a specific and reproducible biosynthetic program. By the eighth day of culture, the chondrocytes are making proteoglycans that are similar to proteoglycans isolated from adult animal tissues. Relative to the Day 8 proteoglycans, the proteoglycans synthesized by chick limb bud chondrocytes earlier in culture have a smaller monomer size, longer chondroitin sulfate chains, shorter keratan sulfate chains, a higher ratio of chondroitin-6-sulfate to chondroitin-4-sulfate, and a decreased ability to interact with hyaluronic acid. We have reported a procedure to remove the cells from Day 8 cultures and strip away most, if not all, of the extracellular matrix. In addition, the chondrocytes can be separated from the 40-50% nonchondrocytic cells normally found in Day 8 cultures, and the two cell populations replated separately. This report describes the analysis of the proteoglycans synthesized by replated cells; this analysis demonstrates quantitative and qualitative differences between chondrocyte and nonchondrocyte proteoglycans. The overall rate of proteoglycan synthesis is fourfold higher and the rate of synthesis of high buoyant density proteoglycans 30-fold higher for replated chondrocytes relative to nonchondrocytes. Qualitatively, more newly synthesized nonchondrocyte proteoglycans partition at lower buoyant density on CsCl equilibrium density gradients than do chondrocyte proteoglycans. Nonchondrocyte proteoglycans are of two major classes: One has a monomer size slightly smaller than that of Day 8 chondrocyte proteoglycan, but has much longer glycosaminoglycan chains. The other is considerably smaller than Day 8 chondrocyte proteoglycans, but has glycosaminoglycans of slightly larger size. In contrast, replated chondrocytes synthesize, even as soon as 4.5 hr after replating, proteoglycans that are identical to Day 8 chondrocyte proteoglycan in monomer size, in glycosaminoglycan chain size, in aggregability, and in the ratio of 6-sulfated to 4-sulfated chondroitin. Since denuding mature Day 8 chondrocytes of their extracellular matrix does not cause them to recapitulate their developmentally regulated program for the biosynthesis of proteoglycans, it is concluded that the quality of mature chondrocyte proteoglycan is not altered by the absence of extracellular matrix.  相似文献   

19.
In the proteoglycans extracted from rabbit costal chondrocytes in culture, two populations of proteoglycans were distinguished by density gradient centrifugation under dissociative conditions. The major component was the faster sedimenting population (proteoglycan I), the putative 'cartilage-specific' proteoglycans, and the minor component was the slower sedimenting population (proteoglycan II). The monomeric size of proteoglycan I was closely related to the differentiation-state of chondrocytes and was a good marker of the differentiated chondrocytes. Treatment of the cultures with parathyroid hormone (PTH) induced an increase in the monomeric size of proteoglycan I. This increase was ascribed to an increase in the molecular size of the glycosaminoglycan chain in proteoglycan I. On the other hand, somatomedin-like growth factors, such as multiplication-stimulating activity (MSA) and cartilage-derived factor (CDF), did not affect the size of proteoglycan I, while they markedly stimulated the synthesis of proteoglycan I. In contrast, treatment with nonsomatomedin growth factors, such as fibroblast growth factor (FGF) and epidermal growth factor (EGF), resulted in not only a decrease in glycosaminoglycan synthesis but also a slight decrease in size of proteoglycan I. However, synthesis and size of proteoglycan II were little affected by these agents. Thus, the present study clearly shows that PTH and somatomedin-like growth factors have differential functions in bringing about the expression of the differentiated phenotype of chondrocytes: PTH influences chain elongation and termination of glycosaminoglycans in proteoglycan I, while somatomedin-like growth factors affect primarily the synthesis and secretion of proteoglycan I.  相似文献   

20.
The addition of retinoic acid to adult bovine articular cartilage cultures produces a concentration-dependent decrease in both proteoglycan synthesis and the proteoglycan content of the tissue. Total protein synthesis was not affected by the presence of retinoic acid, indicating that the inhibition of proteoglycan synthesis was not due to cytotoxicity. The proteoglycans synthesized in the presence of retinoic acid were similar in hydrodynamic size, ability to form aggregates with hyaluronate, and glycosaminoglycan composition to those of control cultures. However, the presence of larger glycosaminoglycan chains suggests that the core protein was substituted with fewer but longer glycosaminoglycan chains. In cultures maintained with retinoic acid, a decreased ratio of the large proteoglycan was synthesized relative to the small proteoglycan compared to that measured in control cultures. In cultures maintained with retinoic acid for 1 day and then switched to medium with 20% (v/v) fetal calf serum, the rate of proteoglycan synthesis and hexuronate contents increased within 5 days to levels near those of control cultures. Within 2 days of switching to medium with 20% (v/v) fetal calf serum, the relative proportions of the proteoglycan species were similar to those produced in cultures maintained in medium with 20% (v/v) fetal calf serum throughout. The rate of proteoglycan synthesis by bovine articular cartilage cultures exhibited an exponential decay following exposure to retinoic acid, with estimated half-lives of 11.5 and 5.3 h for tissue previously maintained in medium alone or containing 20% (v/v) fetal calf serum, respectively. The addition of 1 mM benzyl beta-D-xyloside only partially reversed the retinoic acid-mediated inhibition of proteoglycan synthesis. This indicates that the inhibition of proteoglycan synthesis by retinoic acid was due to both a decreased availability of xylosylated core protein and a decreased capacity of the chondrocytes to synthesize chondroitin sulfate chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号