共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411–426, 1998. © 1998 Wiley-Liss, Inc. 相似文献
2.
J. M. Gimble C. Morgan K. Kelly X. Wu V. Dandapani C.-S. Wang V. Rosen 《Journal of cellular biochemistry》1995,58(3):393-402
The bone morphogenetic proteins were originally identified based on their ability to induce ectopic bone formation in vivo and have since been identified as members of the transforming growth factor-β gene superfamily. It has been well established that the bone morphogenetic cytokines enhance osteogenic activity in bone marrow stromal cells in vitro. Recent reports have described how bone morphogenetic proteins inhibited myogenic differentiation of bone marrow stromal cells in vitro. In vivo, bone marrow stromal cells differentiate along the related adipogenic pathway with advancing age. The current work reports the inhibitory effects of the bone morphorphogenetic proteins on adipogenesis in a multipotent murine bone marrow stromal cell line, BMS2. When exposed to bone morphogenetic protein-2, the pre-adipocyte BMS2 cells exhibited the expected induction of the osteogenic-related enzyme, alkaline phosphatase. Following induction of the BMS2 cells with adipogenic agonists, adipocyte differentiation was assessed by morphologic, enzymatic, and mRNA markers. Flow cytometric analysis combined with staining by the lipophilic fluorescent dye, Nile red, was used to quantitate the extent of lipid accumulation within the BMS2 cells. By this morphologic criteria, the bone morphogenetic proteins inhibited adipogenesis at concentrations of 50 to 500 ng/ml. This correlated with decreased levels of adipocyte specific enzymes and mRNAs. The BMS2 pre-adipocytes constitutively expressed mRNA encoding bone morphogenetic protein-4 and this was inhibited by adipogenic agonists. Together, these findings demonstrate that bone morphogenetic proteins act as adipogenic antagonists. This supports the hypothesis that adipogenesis and osteogenesis in the bone marrow microenvironment are reciprocally regulated. 相似文献
3.
Cartilage-derived morphogenetic proteins induce osteogenic gene expression in the C2C12 mesenchymal cell line 总被引:2,自引:0,他引:2
Cartilage-derived morphogenetic protein-1, -2, and -3 (CDMP-1, -2, and -3) are members of the bone morphogenetic protein (BMP) family and have been shown to exhibit a variety of biological activities. In the present study, effects of these CDMPs on the temporal and spatial expression of genes in the pluripotent mesenchymal cell line C2C12 were examined. Cells cultured in the presence of CDMPs lost the characteristic elongated shape of myoblasts. At the molecular level, CDMP treatment did not change the mRNA expression of MyoD, aggrecan, Six1, and tendin. Scleraxis mRNA level was reduced by CDMP treatment. CDMP-1 and -3, but not CDMP-2, stimulated expression of osteogenic markers, such as alkaline phosphatase (AP), osteocalcin (OC), BSP, and type I collagen, in a dose- and time-dependent manner. With few exceptions, the three CDMPs changed, with different potencies, the expression profile of different members of the BMP family in a similar temporal pattern. Except at the late phase of treatment, CDMP treatment did not change the expression of ActR-IA, BMPR-IA, BMPR-IB, BMPR-II, and ALK-7 mRNAs. Based on the current data, the CDMPs appear to be able to stimulate the C2C12 cells to differentiate into the osteoblast pathway. 相似文献
4.
Chronic exposure of bone morphogenetic protein-2 favors chondrogenic expression in human articular chondrocytes amplified in monolayer cultures 总被引:1,自引:0,他引:1
Claus S Aubert-Foucher E Demoor M Camuzeaux B Paumier A Piperno M Damour O Duterque-Coquillaud M Galéra P Mallein-Gerin F 《Journal of cellular biochemistry》2010,111(6):1642-1651
Articular cartilage is a specialized connective tissue containing chondrocytes embedded in a network of extracellular macromolecules such as type II collagen and presents poor capacity to self-repair. Autologous chondrocyte transplantation (ACT) is worldwide used for treatment of focal damage to articular cartilage. However, dedifferentiation of chondrocytes occurs during the long term culture necessary for mass cell production. The aim of this study was to investigate if addition of bone morphogenetic protein (BMP)-2, a strong inducer of chondrogenic expression, to human chondrocytes immediately after their isolation from cartilage, could help to maintain their chondrogenic phenotype in long-term culture conditions. Human articular chondrocytes were cultured according to the procedure used for ACT. Real-time PCR and Western blotting were performed to evaluate the cellular phenotype. Exogenous BMP-2 dramatically improves the chondrogenic character of knee articular chondrocytes amplified over two passages, as assessed by the BMP-2 stimulation on type II procollagen expression and synthesis. This study reveals that BMP-2 could potentially serve as a therapeutic agent for supporting the chondrogenic phenotype of human articular chondrocytes expanded in the conditions generally used for ACT. 相似文献
5.
6.
Singhatanadgit W Mordan N Salih V Olsen I 《The international journal of biochemistry & cell biology》2008,40(12):2854-2864
Cell responses to bone morphogenetic proteins (BMP) depend on the expression and surface localisation of transmembrane receptors BMPR-IA, -IB and -II. The present study shows that all three antigens are readily detected in human bone cells. However, only BMPR-II was found primarily at the plasma membrane, whereas BMPR-IA was expressed equally in the cytoplasm and at the cell surface. Notably, BMPR-IB was mainly intracellular, where it was associated with a number of cytoplasmic structures and possibly the nucleus. Treatment with transforming growth factor β1 (TGF-β1) caused rapid translocation of BMPR-IB to the cell surface, mediated via the p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways. The TGF-β1-induced increase in surface BMPR-IB resulted in significantly elevated BMP-2 binding and Smad1/5/8 phosphorylation, although the receptor was subsequently internalised and the functional response to BMP-2 consequently down-regulated. The results show, for the first time, that BMPR-IB is localised primarily in intracellular compartments in bone cells and that TGF-β1 induces rapid surface translocation from the cytoplasm to the cell surface, resulting in increased sensitivity of the cells to BMP-2. 相似文献
7.
8.
Recombinant human bone morphogenetic protein-2 stimulates differentiation in primary cultures of fetal rat calvarial osteoblasts 总被引:1,自引:0,他引:1
Chaudhari Anshumali Ron Eyal Rethman Michael P. 《Molecular and cellular biochemistry》1997,168(1-2):31-39
Molecular mechanisms of lipid synthesis and their controls in hepatic stellate cells are not known. We have previously proposed that, in contrast to other fat storing cells, hepatic stellate cells are not involved in energy storage, but they represent a particular cell population specialized in storage of lipid-soluble substances, the major one being probably retinol. In agreement with this hypothesis, induction of the lipocyte phenotype in stellate cells is not under the control of insulin, but responds to retinoids and other molecules that modify the gene expression program in these cells. In the present study we have monitored the activity of the two major enzymes involved in lipid synthesis during the induction of the lipocyte phenotype in hepatic stellate cells: glycerol-3-phosphate dehydrogenase (GPDH) that mediates the de novo lipid synthesis, and lipoprotein lipase that mediates incorporation of plasma lipids. In early stages of lipocyte induction, both pathways of lipid synthesis are activated. When lipocytes have already constituted the lipid droplets, lipoprotein lipase pathway is downregulated, while GPDH activity remains high. Adult liver has been reported to lack lipoprotein lipase, but under stress, lipase activity was detected around and at the surface of the intrahepatic vasculature. We have now shown that the lipase activity can be induced in the hepatic stellate cells, located in the Disse's space. The high lipoprotein lipase activity under acute induction of lipocyte phenotype, followed by the low activity under conditions of metabolic equilibrium, are in compass with the increased activity of this enzyme under stress, and its low activity in adult liver parenchyma under normal conditions. 相似文献
9.
10.
Retinoic acid down-regulates VPAC1 receptors and TGF-β3 but up-regulates TGF-β2 in lung cancer cells
The effects of retinoic acid (RA) on lung cancer cells were investigated. Both all-trans (t-RA) and 13-cis RA (c-RA) decreased specific 125I-VIP binding to NCI-H1299 cells in a time- and concentration-dependent manner. After 20 hr, 30 μM t-RA decreased specific 125I-VIP binding by 60%. By Scatchard analysis, the density of VIP binding sites but not the affinity was reduced by 42%. NCI-H1299 VPAC1 receptor mRNA was reduced by 48%. VIP caused a 3-fold elevation in the NCI-H1299 cAMP, and the increase in cAMP caused by VIP was reduced by 38% if the NCI-H1299 cells were treated with t-RA. Using the MTT assay, 3 μM t-RA and 3 μM c-RA inhibited NCI-H1299 proliferation by 60 and 23% respectively. Also, transforming growth factor (TGF)-β2 increased after treatment of NCI-H1299 cells with t-RA whereas TGF-β1 mRNA was unaffected and TGF-β3 mRNA was decreased. These results suggest that RA may inhibit lung cancer growth by down-regulating VPAC1 receptor and TGF-β3 mRNA but up-regulating TGF-β2 mRNA. 相似文献
11.
12.
Uyama Y Yagami K Hatori M Kakuta S Nagumo M 《Differentiation; research in biological diversity》2004,72(1):32-40
We examined osteo-chondrogenic differentiation of a human chondrocytic cell line (USAC) by rhBMP-2 in vivo and in vitro. USAC was established from a transplanted tumor to athymic mouse derived from an osteogenic sarcoma of the mandible. USAC usually shows chondrocytic phenotypes in vivo and in vitro. rhBMP-2 up-regulated not only the mRNA expression of types II and X collagen, but also the mRNA expression of osteocalcin and Cbfa1 in USAC cells in vitro. In vivo experimental cartilaginous tissue formation was prominent in the chamber with rhBMP-2 when compared with the chamber without rhBMP-2. USAC cells implanted with rhBMP-2 often formed osteoid-like tissues surrounded by osteoblastic cells positive for type I collagen. rhBMP up-regulated Ihh, and the expression of Ihh was well correlated with osteo-chondrogenic cell differentiation. These results suggest that rhBMP-2 promotes chondrogenesis and also induces osteogenic differentiation of USAC cells in vivo and in vitro through up-regulation of Ihh. 相似文献
13.
14.
15.
16.
Mohamed Saleh Nada A. Mohamed Anuradha Sehrawat Ting Zhang Madison Thomas Yan Wang Ranjeet Kalsi Justin Molitoris Krishna Prasadan George K. Gittes 《The Journal of biological chemistry》2021,297(5)
Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus. 相似文献
17.
18.
19.
Mice lacking the gene for Folr1 (folic acid receptor 1) have an NTD (neural tube defect) that is rescued by maternal folate supplementation. Primary cultures of MEFs (mouse embryonic fibroblasts) were established from these embryos and the effect on various signalling pathways examined. TGFβ1 (transforming growth factor β1) inhibited the proliferation of wild-type and Folr1-/- MEFs, and folate restriction, either in growth medium or through folate uptake, led to further inhibition of growth. This effect may be Smad-independent because reporter assays using the Smad-dependent reporter, p3TP-lux, revealed attenuation of TGFβ1/Smad signalling in Folr1-/- MEFs. Signalling through the canonical Wnt pathway, measured by Wnt-3a stimulated expression of the target gene, Axin2, demonstrated increased activity in Folr1-/- MEFs. Only minor changes in the expression of a panel of TGFβ (transforming growth factor β) and Wnt pathway-associated genes were revealed when Folr1-/- MEFs were compared with wild-type cells. These results demonstrate that under conditions of reduced folate (Folr-/-) signalling, pathways crucial for proper development of the neural tube are significantly altered. 相似文献
20.
C Klein-Soyer G Archipoff A Beretz J P Cazenave 《Biology of the cell / under the auspices of the European Cell Biology Organization》1992,75(2):155-162
The effects on vascular wound repair in vitro of aFGF and TGF-beta, growth factors having opposite influences on endothelial cell growth and angiogenesis, were studied using as a model a mechanical lesion of confluent endothelium. Modulation by heparin of the activities of these growth factors during the repair process was also examined. Whereas heparin alone inhibited repair by lowering both cell proliferation and cell migration, TGF-beta alone mainly inhibited cell proliferation. When added together, TGF-beta and heparin exerted a combined inhibitory effect resulting in a residual lesion 50% larger than in controls. aFGF alone accelerated lesion coverage and this effect was enhanced by 40% over control values when heparin was added with aFGF. This acceleration was slightly (less than 10%) but consistently diminished by TGF-beta. Cell density in confluent unwounded areas was increased by 40% in the presence of aFGF, but TGF-beta diminished cell density by 20%. A small (30%) increase in intracellular cAMP was measured whenever aFGF was present during the repair process. In comparison, intracellular cAMP inducing agents (forskolin, dbcAMP) accelerated cell migration by 20% during lesion recovery without affecting cell proliferation or density. The present results show that the inhibitory effects of TGF-beta during vascular wound repair are opposed by aFGF. Furthermore, heparin (or heparan sulfates in vivo) modulates growth factors having activating or inhibiting functions and thus plays a regulatory role during the repair process. cAMP-inducing substances other than growth factors are able to accelerate cell migration. 相似文献