首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

2.
We have determined the dose-response of 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) on the intracellular free calcium-ion concentration ([Ca2+1]i) in the osteoblastic osteosarcoma cells, ROS 17/2.8, using 19F-NMR and the intracellular divalent cation indicator, 1,2-bis(2-amino-5-fluorephenoxy)ethane-N, N, N′, N′-tetraacetic acid (5F-BAPTA). The dose-response demonstrated an inverted U-shaped relationship with maximal elevation of [Ca2+]i at doses of 1 to 10 nM 1,25-(OH)2D3. At 10 nM, 1,25-(OH)2D3 elevated the [Ca2+]i from a control level of 118±4 nM to a peak value of 237±8 nM within 40 min. 1,25-(OH)2D3 also increased the intial rate of Ca2+ influx into ROs 17/2.8 cells, measured by 45Ca uptake, with a dose-response relationship which paralleled its effects on [Ca2+]i. Treatment of ROS 17/2.8 cells with Pb2+ at 1 and 5 μM significantly increased [Ca2+]i but significantly reduced the 1,25-(OH)2D3-induced elevation of [Ca2+]i. Simultaneous treatment of naive cells with 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3 and Pb2+ produce little reduction of 1,25-(OH)2D3-induced 45Ca uptake while 40 min treatment with Pb2+ before addition of 1,25-(OH)2D3 significantly reduced the 1,25-(OH)2D3-induced increase in 45Ca influx. These findings suggest that Pb2+ acts by inhibiting 1,25-(OH)2D3-activation of Ca2+ channels and interferes with 1,25-(OH)2D3 regulation of Ca2+ metabolism in osteoblastic bone cells.  相似文献   

3.
The endothelin (ET) isoforms ET-1, ET-2 and ET-3 applied at 100 nM triggered a transient increase in [Ca2+]i in Bergmann glial cells in cerebellar slices acutely isolated from 20–25 day-old mice. The intracellular calcium concentration ([Ca2+]i) was monitored using Fura-2-based ([Ca2+]i) microfluorimetry. The ET-triggered ([Ca2+]i) transients were mimicked by ET, receptor agonist BO-3020 and were inhibited by ETB receptor antagonist BQ-788. ET elevated [Ca2+]i in Ca2+-free extracellular solution and the ET-triggered [Ca2+]i elevation was blocked by 500 nM thapsigargin indicating that the [Ca2+]i was released from InsP3 sensitive intracellular pools. The ET-triggered [Ca2+]i increase in Ca2+-free solution was shorter in duration. Restoration of normal extracellular [Ca2+] briefly after the ET application induced a second [Ca2+]i increase indicating the presence of a secondary Ca2+ influx which prolongs the Ca2+ signal. Pre-application of 100 μM ATP or 10 μM noradrenaline blocked the ET response suggesting the involvement of a common Ca2+ depot. The expression of ETB receptor mRNAs in Bergmann glial cells was revealed by single-cell RT-PCR. The mRNA was also found in Purkinje neurones, but no Ca2+ signalling was triggered by ET. We conclude that Bergmann glial cells are endowed with functional ETB receptors which induce the generation of intracellular [Ca2+]i signals by activation of Ca2+ release from InsP3-sensitive intracellular stores followed by a secondary Ca2+ influx.  相似文献   

4.
The P2U purinergic agonist ATP (0.3 mM) elicited an increase in [Ca2+]i due to Ca2+ release from intracellular stores in transfected Chinese hamster ovary cells that express the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). The following observations indicate that ATP-evoked Ca2+ release was accompanied by a Ca2+- dependent regulatory activation of Na+/Ca2+ exchange activity: Addition of extracellular Ca2+ (0.7 mM) 0–1 min after ATP evoked a dramatic rise in [Ca2+]i in Na+-free media (Li+ substitution) compared to Na+-containing media; no differences between Na+- and Li+-based media were observed with vector-transfected cells. In the presence of physiological concentrations of extracellular Na+ and Ca2+, the ATP-evoked rise in [Ca2+]i declined more rapidly in CK1.4 cells compared to control cells, but then attained a long-lived plateau of elevated [Ca2+]i which eventually came to exceed the declining [Ca2+]i values in control cells. ATP elicited a transient acceleration of exchange-mediated Ba2+ influx, consistent with regulatory activation of the Na+/Ca2+ exchanger. The acceleration of Ba2+ influx was not observed in vector-transfected control cells, or in CK1.4 cells in the absence of intracellular Na+ or when the Ca2+ content of the intracellular stores had been reduced by prior treatment with ionomycin. The protein kinase C activator phorbol 12-myristate 13-acetate attenuated the exchange-mediated rise in [Ca2+]i under Na+-free conditions, but did not inhibit the ATP-evoked stimulation of Ba2+ influx. The effects of PMA are therefore not due to inhibition of exchange activity, but probably reflect the influence of protein kinase C on other Ca2+ homeostatic mechanisms. We conclude that exchange activity is accelerated during ATP-evoked Ca2+ release from intracellular stores through regulatory activation by increased [Ca2+]i. In the absence of extracellular Ca2+, the stimulation of exchange activity is short-lived and follows the time course of the [Ca2+]i transient; in the presence of extracellular Ca2+, we suggest that the exchanger remains activated for a longer period of time, thereby stabilizing and prolonging the plateau phase of store-dependent Ca2+ entry.  相似文献   

5.
This study examined [Ca2+]i oscillations in the human salivary gland cell lines, HSY and HSG. Relatively low concentrations of carbachol (CCh) induced oscillatory, and higher [CCh] induced sustained, steady-state increases in [Ca2+]i and K Ca currents in both cell types. Low IP3, but not thapsigargin (Tg), induced [Ca2+]i oscillations, whereas Tg blocked CCh-stimulated [Ca2+]i oscillations in both cell types. Unlike in HSG cells, removal of extracellular Ca2+ from HSY cells (i) did not affect CCh-stimulated [Ca2+]i oscillations or internal Ca2+ store refill, and (ii) converted high [CCh]-induced steady-state increase in [Ca2+]i into oscillations. CCh- or thapsigargin-induced Ca2+ influx was higher in HSY, than in HSG, cells. Importantly, HSY cells displayed relatively higher levels of sarcoendoplasmic reticulum Ca2+ pump (SERCA) and inositoltrisphosphate receptors (IP3Rs) than HSG cells. These data demonstrate that [Ca2+]i oscillations in both HSY and HSG cells are primarily determined by the uptake of Ca2+ from, and release of Ca2+ into, the cytosol by the SERCA and IP3R activities, respectively. In HSY cells, Ca2+ influx does not acutely contribute to this process, although it determines the steady-state increase in [Ca2+]i. In HSG cells, [Ca2+]i oscillations directly depend on Ca2+ influx; Ca2+ coming into the cell is rapidly taken up into the store and then released into the cytosol. We suggest that the differences in the mechanism of [Ca2+]i oscillations HSY and HSG cells is related to their respective abilities to recycle internal Ca2+ stores. Received: 30 October 2000/Revised: 26 February 2001  相似文献   

6.
One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca2+ concentration ([Ca2+]i) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca2+]i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca2+]i. The stretch-induced [Ca2+]i elevation was attenuated in Ca2+-free solution. In contrast, the increase of [Ca2+]i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd3+, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca2+]i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.  相似文献   

7.
Fluctuations of intracellular Ca2+ ([Ca2+]i) regulate a variety of cellular functions. The classical Ca2+ transport pathways in the endoplasmic reticulum (ER) and plasma membrane are essential to [Ca2+]i oscillations. Although mitochondria have recently been shown to absorb and release Ca2+ during G protein-coupled receptor (GPCR) activation, the role of mitochondria in [Ca2+]i oscillations remains to be elucidated. Using fluo-3-loaded human teratocarcinoma NT2 cells, we investigated the regulation of [Ca2+]i oscillations by mitochondria. Both the muscarinic GPCR agonist carbachol and the ER Ca2+-adenosine triphosphate inhibitor thapsigargin (Tg) induced [Ca2+]i oscillations in NT2 cells. The [Ca2+]i oscillations induced by carbachol were unsynchronized among individual NT2 cells; in contrast, Tg-induced oscillations were synchronized. Inhibition of mitochondrial functions with either mitochondrial blockers or depletion of mitochondrial DNA eliminated carbachol—but not Tg-induced [Ca2+]i oscillations. Furthermore, carbachol-induced [Ca2+]i oscillations were partially restored to mitochondrial DNA-depleted NT2 cells by introduction of exogenous mitochondria. Treatment of NT2 cells with gap junction blockers prevented Tg-induced but not carbachol-induced [Ca2+]i oscillations. These data suggest that the distinct patterns of [Ca2+]i oscillations induced by GPCR and Tg are differentially modulated by mitochondria and gap junctions.  相似文献   

8.
Abstract— ATP-induced changes in the intracellular Ca2+concentration ([Ca2+]i) in neuroblastoma glioma hybrid NG108–15 cells were studied. Using the fluorescent Ca2+indicator fura-2, we have shown that the [Ca2+]i increased in response to ATP. ATP at 3 mM caused the greatest increase in [Caz+]i, whereas at higher concentrations of ATP the response became smaller. Two nonhydrolyzable ATP analogues, adenosine 5′-thiotriphosphate and 5′-adenylyl-β, γ-imidodiphosphate, could not trigger significant [Ca2+]i change, but they could block the ATP effect. Other adenine nucleotides, including ADP, AMP, α,β-methylene-ATP, β,γ-methylene-ATP, and 2-methylthio-ATP, as well as UTP and adenosine, all had no effect on [Ca2+]i at 3 mM. In the absence of extracellular Ca2+, the effect of ATP was inhibited totally, but could be restored by the addition of Ca2+ to the cells. Upon removal of Mg2+, the maximum increase in [Ca2+]i induced by ATP was enhanced by about 42%. Ca2+-channel blockers partially inhibited the ATP-induced [Ca2+]i rise. The ATP-induced [Ca2+]i rise was not affected by thapsigargin pretreatment, though such pretreatment blocked bradykinin-induced [Ca2+]i rise completely. No heterologous desensitization of [Ca2+]i rise was observed between ATP and bradykinin. The magnitude of the [Ca2+]i rise induced by ATP increased between 1.5 and 3.1 times when external Na+was replaced with Tris, N-methyl-d -glucamine, choline, or Li+. The addition of EGTA or verapamil to cells after their maximum response to ATP immediately lowered the [Ca2+]i to the basal level in Na+-containing or Na+-free Tris solution. Our results suggest that ATP stimulates Ca2+influx via at least two pathways: ion channels that are permeable to Ca2+ and Na+, and pores formed by ATP4-.  相似文献   

9.
In the present study, the bombesin-induced changes in cytosolic free Ca2+ ([Ca2+]i) were investigated in single Fura-2 loaded SV-40 transformed hamster β-cells (HIT). Bombesin (50–500 pM) caused frequency-modulated repetitive Ca2+ transients. The average frequency of the Ca2+ transients induced by bombesin (200 pM) was 0.58 ± 0.02 min−1 (n = 121 cells). High concentrations of bombesin (≥ 2 nM) triggered a large initial Ca2+ transient followed by a sustained plateau or by a decrease to basal levels. In Ca2+- free medium, bombesin caused only one or two Ca2+ transients and withdrawal of extracellular Ca2+ abolished the Ca2+ transients. The voltage-dependent Ca2+ channel (VDCC) blockers, verapamil (50 μM) and nifedipine (10 μM), reduced amplitude and frequency of the Ca2+ transients and stopped the Ca2+ transients in some cells. Thapsigargin caused a sustained rise in [Ca2+]i) in the presence of extracellular Ca2+ while in its absence the rise in [Ca2+]i) was transient. Verapamil (50 μM) inhibited the thapsigargin-induced increase in [Ca2+], by about 50%. Depletion of intracellular Ca2+ stores by repetitive stimulation with increasing concentrations of bombesin or thapsigargin in Ca2+-free medium caused an agonist-independent increase in [Ca2+]i) when extracellular Ca2+ was restored, which was larger than in control cells that had been incubated in Ca2+-free medium for the same period of time. This rise in [Ca2+]i and the thapsigargin-induced increase in [Ca2+]i) were only partly inhibited by VDCC-blockers. Thus, depletion of the agonist-sensitive Ca2+ pool enhances Ca2+ influx through VDCC and voltage-independent Ca2+ channels (VICC). In conclusion, the bombesin-induced Ca2+ response in single HIT cells is periodic in nature with frequency-modulated repetitive Ca2+ transients. Intracellular Ca2+ is mobilized during each Ca2+ transient, but Ca2+ influx through VDCC and VICC is required for maintaining the sustained nature of the Ca2+ response. Ca2+ influx in whole or part is activated by a capacitative Ca2+ entry mechanism.  相似文献   

10.
The source, time course and stoichiometry of cytosolic free Ca2+ ([Ca2+]i) during contraction were examined in smooth muscle cells isolated from the guinea pig and human stomach. Contraction by receptor-linked agonists (eg, acetylcholine, cholecystokinin octapeptide and Met-enkephalin) was preceded by stoichiometric increases in [Ca2+]i and net 45Ca2+ efflux that were maintained in the absence of extracellular Ca2+ or in the presence of a Ca2+ channel blocker (13600). The intracellular Ca2+ store could be depleted by repeated stimulation with all agonists in Ca2+-free medium or in the presence of 13600 resulting in loss of contractile response; response was restored by re-exposure of the cells to Ca2+.The source of intracellular Ca2+ an the signal for its release were examined in saponin-permeabilized muscle cells. The cells retained their ability to contract in response to receptor-linked agonists and developed an ability to contract in response to inositol trisphosphate (IP3). The cells accumulated Ca2+ to the same extent as intact muscle cells, but only in the presence of ATP. IP3 caused a prompt, concentration-dependent increase in contraction, [Ca2+]i and net 45Ca2+ efflux. These effects were maximally similar to those produced by CCK-8 alone or in combination with IP3: Depletion of the Ca2+ store by repeated stimulation of single muscle cells in Ca2+-free medium with IP3, acetylcholine or CCK-8 separately resulted in loss of contractile response to all three agents; the response was restored by re-exposure of the muscle cell to a cytosol-like perfusate (Ca2+ 180 nM).The studies demonstrate that a product of membrane phosphoinositide hydrolysis is capable of mobilizing Ca2+ from a depletable, non-mitochondrial intracellular store that is utilized by receptor-linked agonists. The magnitude of IP3-induced Ca2+ release is correlated with contraction.  相似文献   

11.
The effect of ketoconazole on cytosolic free Ca2 + concentrations ([Ca2 +]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2 + levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2 +]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 μ M and above increased [Ca2 +]i in a concentration-dependent manner. The Ca2 + signal was reduced partly by removing extracellular Ca2 +. The ketoconazole-induced Ca2 + influx was insensitive to L-type Ca2 + channel blockers and protein kinase C modulators. In Ca2 +-free medium, after pretreatment with 50 μ M ketoconazole, thapsigargin-(1 μ M)-induced [Ca2 +]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2 +]i rises. Inhibition of phospholipase C with 2 μ M U73122 did not change ketoconazole-induced [Ca2 +]i rises. At concentrations between 5 and 100 μ M, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 μ M ketoconazole was not reversed by prechelating cytosolic Ca2 + with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2 +]i rises by causing Ca2 + release from the endoplasmic reticulum and Ca2 + influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2 +]i rise.  相似文献   

12.
Abstract

Protriptyline, a tricyclic anti-depressant, is used primarily to treat the combination of symptoms of anxiety and depression. However, the effect of protriptyline on prostate caner is unknown. This study examined whether the anti-depressant protriptyline altered Ca2+ movement and cell viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Protriptyline evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Protriptyline-evoked Ca2+ entry was inhibited by store-operated channel inhibitors (nifedipine, econazole and SKF96365), protein kinase C activator (phorbol 12-myristate 13 acetate, PMA) and protein kinase C inhibitor (GF109203X). Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydr-oquinone (BHQ) in Ca2+-free medium inhibited 60% of protriptyline-evoked [Ca2+]i rises. Conversely, treatment with protriptyline abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C with U73122 suppressed 50% of protriptyline-evoked [Ca2+]i rises. At concentrations of 50–70?µM, protriptyline decreased cell viability in a concentration-dependent manner; which were not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in PC3 cells, protriptyline evoked [Ca2+]i rises by inducing phospholipase C-associated Ca2+ release from the endoplasmic reticulum and other stores, and Ca2+ influx via protein kinase C-sensitive store-operated Ca2+ channels. Protriptyline caused cell death that was independent of [Ca2+]i rises.  相似文献   

13.
The giant axon of the squid has been extensively used as a model for studying Ca regulation in excitable cells. Different techniques (extrusion, injection and dialysis) have been employed to characterize Ca fluxes across the axon membrane. Since both Ca efflux and influx are markedly dependent on [Ca2+]i, considerable effort has been dedicated to determine the resting value of the [Ca2+]i. Results from different laboratories indicate that the [Ca2+]i, in a normal fibre, range from 20–100 nM. Under dialysis conditions (internal control), with an imposed [Ca2+]i of 80 nM, Ca influx is balanced by an outward Ca movement of about 40 f/CS. Ca extrusion occurs through two parallel transport systems: one having a high affinity for [Ca2+]i, dependent on ATP, not affected by Nai, Nao, Cao, Mgo and inhibited by internal vanadate (uncoupled component), the other, more prominent at relatively high [Ca2+]i, does not require ATP, is inhibited by Nai activated by Nao and not inhibited by vanadate. (Nao-dependent component). The existence of these two systems provide the axon with an effective way to maintain in the long term a constant low [Ca2+]i in spite of short term fluctuations due to increased Ca influx during nervous activity.  相似文献   

14.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability in OC2 human oral cancer cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The tamoxifen-induced Ca2+ influx was sensitive to blockade of L-type Ca2+ channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), tamoxifen-induced [Ca2+]i rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change tamoxifen-induced [Ca2+]i rises. At concentrations between 10 and 50 μM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 μM tamoxifen was not reversed by prechelating cytosolic Ca2+ with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca2+]i rises, in a nongenomic manner, by causing Ca2+ release from the endoplasmic reticulum, and Ca2+ influx from L-type Ca2+ channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca2+]i rise.  相似文献   

15.
A cDNA encoding a mouse B2 bradykinin (BK) receptor was stably transfected in Chinese hamster ovary (CHO) cells. In two resulting transformants, mouse B2 BK receptor was found to induce a twofold elevation in the inositol-1,4,5-trisphosphate level. In a pertussis toxin-insensitive manner, BK also produced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i). The initial elevation in [Ca2+]i was abolished by thapsigargin pretreatment in Ca2+-free medium. The second phase was dependent on external Ca2+. The BK/inositol trisphosphate- and thapsigargin-sensitive Ca2+ stores required extracellular Ca2+ for refilling. Ca2+ influx induced by BK and thapsigargin was confirmed by Mn2+ entry through Ca2+ influx pathways producing Mn2+ quenching. Genistein, a tyrosine kinase inhibitor, partially decreased the BK-induced [Ca2+]i increase during the sustained phase and the rate of Mn2+ entry. BK had essentially no effect on the intracellular cyclic AMP level. The results suggest that the mouse B2 BK receptor couples to phospholipase C in CHO cells and that its activation results in biphasic [Ca2+]i increases, by mobilization of intracellular Ca2+ and store-depletion-mediated Ca2+ influx, the latter of which is tyrosine phosphorylation-dependent.  相似文献   

16.
Cytoplasmic calcium concentration ([Ca2+]i) and extracellular calcium (Ca2+o) influx has been studied in pollen tubes of Lilium longliflorum in which the processes of cell elongation and exocytosis have been uncoupled by use of Yariv phenylglycoside ((β-D-Glc)3). Growing pollen tubes were pressure injected with the ratio dye fura-2 dextran and imaged after application of (β-D-Glc)3, which binds arabinogalactan proteins (AGPs). Application of (β-D-Glc)3 inhibited growth but not secretion. Ratiometric imaging of [Ca2+]i revealed an initial spread in the locus of the apical [Ca2+]i gradient and substantial elevations in basal [Ca2+]i followed by the establishment of new regions of elevated [Ca2+]i on the flanks of the tip region. Areas of elevated [Ca2+]i corresponded to sites of pronounced exocytosis, as evidenced by the formation of wall ingrowths adjacent to the plasma membrane. Ca2+o influx at the tip of (β-D-Glc)3-treated pollen tubes was not significantly different to that of control tubes. Taken together these data indicate that regions of elevated [Ca2+]i, probably resulting from Ca2+o influx across the plasma membrane, stimulate exocytosis in pollen tubes independent of cell elongation.  相似文献   

17.
《Cell calcium》1996,20(3):303-314
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca2+-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of −60 mV, the muscarine-induced [Ca2+]i, rise, especially its sustained phase, decreased in magnitude. intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca2+ channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

18.
2-Aminoethoxydiphenyl borate (2-APB) is used as a pharmacological tool because it antagonizes inositol 1,4,5-trisphosphate receptors and store-operated Ca2+ (SOC) channels, and activates some TRP channels. Recently, we reported that 2-APB enhanced the increase in cytotoxic [Ca2+]i, resulting in cell death under external acidic conditions in rat pheochromocytoma cell line PC12. However, the molecular mechanism and functional role of the 2-APB-induced Ca2+ influx in PC12 have not been clarified. In this study, to identify the possible target for the action of 2-APB we examined the pharmacological and molecular properties of [Ca2+]i and secretory responses to 2-APB under extracellular low pH conditions. 2-APB dose-dependently induced a [Ca2+]i increase and dopamine release, which were greatly enhanced by the external acidification (pH 6.5). [Ca2+]i and secretory responses to 2-APB at pH 6.5 were inhibited by the removal of extracellular Ca2+ and SOC channel blockers such as SK&F96365, La3+ and Gd3+. PC12 expressed all SOC channel molecules, Orai 1, Orai 2 and Orai 3. When we used an siRNA system, downregulation of Orai 3, but not Orai 1 and Orai 2, attenuated both [Ca2+]i and secretory responses to 2-APB. These results suggest that 2-APB evokes external acid-dependent increases of [Ca2+]i and dopamine release in PC12 through the activation of Orai 3. The present results indicate that 2-APB may be a useful pharmacological tool for Orai channel-related signaling.  相似文献   

19.
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular Ca2 + concentration ([Ca2 +]i) and proliferation was examined by using the Ca2 +-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (≥1 μ M) caused an increase of [Ca2 +]i in a concentration-dependent manner. Celecoxib-induced [Ca2 +]i increase was partly reduced by removal of extracellular Ca2 +. Celecoxib-induced Ca2 + influx was independently suggested by Mn2 + influx-induced fura-2 fluorescence quench. In Ca2 +-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2 +-ATPase, caused a monophasic [Ca2 +]i increase, after which celecoxib only induced a tiny [Ca2 +]iincrease; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [Ca2 +]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [Ca2 +]i increases. Overnight incubation with 1 or 10 μ M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [Ca2 +]i increase in renal tubular cells by stimulating both extracellular Ca2 + influx and intracellular Ca2 + release and is highly toxic to renal tubular cells in vitro.  相似文献   

20.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号