首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

3.
A series of model peptides containing α-trifluoromethyl-substituted amino acids in five different positions relative to the predominant cleavage site of the serine protease α-chymotrypsin was synthesized by solution methods to investigate the influence of α-Tfm substitution on the proteolytic stability of peptides. Proteolysis studies demonstrated absolute stability of peptides substituted in the P1 position and still considerable proteolytic stability for peptides substituted at the P2 and P′2 positions compared with the corresponding unsubstituted model peptide. Comparison with peptides containing the fluorine-free disubstituted amino acid α-aminoisobutyric acid allowed to separate electronic from steric effects. Furthermore, the absolute configuration of the α-Tfm-substituted amino acid was found to exert considerable effects on the proteolytic stability, especially in P′1 substituted peptides. Investigations of this phenomenon using empirical force field calculations revealed that in the (S,R,S)-diasteromer the steric constraints exhibited by the α-Tfm group can be outweighed by an advantageous interaction of the fluorine atoms with the serine side chain of the enzyme. In contrast, a favourable interaction between substrate and enzyme is impossible for the (S,S,S)-diastereomer. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The present study describes the synthesis and crystallographic analysis of αγ hybrid peptides, Boc‐Gpn‐L‐Pro‐NHMe ( 1 ), Boc‐Aib‐Gpn‐L‐Pro‐NHMe ( 2 ), and Boc‐L‐Pro‐Aib‐Gpn‐L‐Pro‐NHMe ( 3 ). Peptides 1 and 2 adopt expanded 12‐membered (C12) helical turn over γα segment. Peptide 3 promotes the ribbon structure stabilized by type II β‐turn (C10) followed by the expanded C12 helical γα turn. Both right‐handed and left‐handed helical conformations for Aib residue are observed in peptides 2 and 3 , respectively Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The aim of the present investigation is to determine the effect of α-helical propensity and sidechain hydrophobicity on the stability of amphipathic α-helices. Accordingly, a series of 18-residue amphipathic α-helical peptides has been synthesized as a model system where all 20 amino acid residues were substituted on the hydrophobic face of the amphipathic α-helix. In these experiments, all three parameters (sidechain hydrophobicity, α-helical propensity and helix stability) were measured on the same set of peptide analogues. For these peptide analogues that differ by only one amino acid residue, there was a 0.96 kcal/mole difference in α-helical propensity between the most (Ala) and the least (Gly) α-helical analogue, a 12.1-minute difference between the most (Phe) and the least (Asp) retentive analogue on the reversed-phase column, and a 32.3°C difference in melting temperatures between the most (Leu) and the least (Asp) stable analogue. The results show that the hydrophobicity and α-helical propensity of an amino acid sidechain are not correlated with each other, but each contributes to the stability of the amphipathic α-helix. More importantly, the combined effects of α-helical propensity and sidechain hydrophobicity at a ratio of about 2:1 had optimal correlation with α-helix stability. These results suggest that both α-helical propensity and sidechain hydrophobicity should be taken into consideration in the design of α-helical proteins with the desired stability.  相似文献   

6.
β‐Amino acids containing hybrid peptides and β‐peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the µ‐ and δ‐opioid receptors of β‐peptides, analogues of Leu‐enkephalin, deltorphin I, dermorphin and α,β‐hybrides, analogues of deltorphin I. Substitution of α‐amino acid residues with β3homo‐amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β3h‐D ‐Ala in position 2 or β3hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ‐opioid receptor. The NMR studies of β‐deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The kinetics of α-helix formation in polyalanine and polyglycine eicosamers (20-mers) were examined using torsional-coordinate molecular dynamics (MD). Of one hundred fifty-five MD experiments on extended (Ala)20 carried out for 0.5 ns each, 129 (83%) formed a persistent α-helix. In contrast, the extended state of (Gly)20 only formed a right-handed α-helix in two of the 20 MD experiments (10%), and these helices were not as long or as persistent as those of polyalanine. These simulations show helix formation to be a competition between the rates of (a) forming local hydrogen bonds (i.e. hydrogen bonds between any residue i and its i + 2, i + 3, i + 4, or i + 5th neighbor) and (b) forming nonlocal hydrogen bonds (HBs) between residues widely separated in sequence. Local HBs grow rapidly into an α-helix; but nonlocal HBs usually retard helix formation by “trapping” the polymer in irregular, “balled-up” structures. Most trajectories formed some nonlocal HBs, sometimes as many as eight. But, for (Ala)20, most of these eventually rearranged to form local HBs that lead to α-helices. A simple kinetic model describes the rate of converting nonlocal HBs into α-helices. Torsional-coordinate MD speeds folding by eliminating bond and angle degrees of freedom and reducing dynamical friction. Thus, the observed 210 ps half-life for helix formation is likely to be a lower bound on the real rate. However, we believe the sequential steps observed here mirror those of real systems. Proteins 33:343–357, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
A series of N- and C-protected, monodispersed homo-oligopeptides (to the pentamer level) from the cycloaliphatic Cα,α,-dialkylated glycine 1-aminocyclononane-1-carboxylic acid (Ac9c) and two Ala/Ac9c tripeptides have been synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives mClAc-Ac9c-OH and Z-Ac9c-OtBu, the dipeptide pBrBz-(Ac9c)2-OtBu, the tetrapeptide Z-(Ac9c)4-OtBu, and the pentapeptide Z-( Ac9c)5-OtBu were determined in the crystal state by X-ray diffraction. Based on this information, the average geometry and the preferred conformation for the cyclononyl moiety of the Ac9c residue have been assessed. The backbone conformational data are strongly in favour of the conclusion that the Ac9c residue is a strong β-turn and helix former. A comparison with the structural propensity of α-aminoisobutyric acid, the prototype of Cα,α-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n=3−8) is made and the implications for the use of the Ac9c residue in conformationally constrained analogues of bioactive peptides are briefly examined. © 1997 European Peptide Society and John Wiley & Sons, Ltd. J. Pep. Sci. 3: 367–382 No. of Figures: 10. No. of Tables: 6. No. of References: 62  相似文献   

9.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

10.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
We report a series of synthetic anticancer heptapeptides (H‐KKWβ2,2WKK‐NH2) containing eight different central lipophilic β2,2‐amino acid building blocks, which have demonstrated high efficiency when used as scaffolds in small cationic antimicrobial peptides and peptidomimetics. The most potent peptides in the present study had IC50 values of 9–23 µm against human Burkitt's lymphoma and murine B‐cell lymphoma and were all nonhaemolytic (EC50 > 200 µm ). The most promising peptide 10e also demonstrated low toxicity against human embryonic lung fibroblast cells and peripheral blood mononuclear cells and exceptional proteolytic stability. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
The terminally blocked tetrapeptide pBrBz-[D -(αMe)Leu]2-D -(αMe)Val-D -(αMe)Leu-OtBu is folded in the crystal state in a left-handed 310-helical structure stabilized by two consecutive 1 ← 4 C?O ?H? N intramolecular H-bonds, as determined by X-ray diffraction analysis. A CD study strongly supports the view that this conformation is also that largely prevailing in MeOH solution. A comparison with the published conformation of pBrBz-[D -(αMe)Leu]4-OtBu indicates that incorporation of a single internal β-branched (αMe)Val guest residue into the host homo-tetrapeptide from the γ-branched (αMe)Leu residue is responsible for a dramatic structural perturbation, i.e. an inversion of the 310 screw sense from right to left-handed.  相似文献   

13.
Results of energy calculations for α-MSH (α-melanocyte stimulating hormone, Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2) and [D -Phe7]α-MSH were used for design of cyclic peptides with the general aim to stabilize different conformational isomers of the parent compound. The minimal structural modifications of the conformationally flexible Gly10 residue, as substitutions for L -Ala, D -Ala, or Aib (replacing of hydrogen atoms by methyl groups), were applied to obtain octa- and heptapeptide analogues of α-MSH(4–11) and α-MSH(5–11), which were cyclized by lactam bridges between the side chains in positions 5 and 11. Some of these analogues, namely those with substitutions of the Gly10 residue with L -Ala or Aib, showed biological activity potencies on frog skin comparable to the potency of the parent tridecapeptide hormone. Additional energy calculations for designed cyclic analogues were used for further refinement of the model for the biologically active conformations of the His-Phe-Arg-Trp “message” sequence within the sequences of α-MSH and [D -Phe7]α-MSH. In such conformations the aromatic moieties of the side chains of the His6, L/D -Phe7, and Trp9 residues form a continuous hydrophobic “surface,” presumably interacting with a complementary receptor site. This feature is characteristic for low-energy conformers of active cyclic analogues, but it is absent in the case of inactive analogues. This particular spatial arrangement of functional groups involved in the message sequence is very close for α-MSH and [D -Phe7]α-MSH, as well as for biologically active cyclic analogues despite differences of dihedral angle values for corresponding low-energy conformations. © 1998 John Wiley & Sons, Inc. Biopoly 46: 155–167, 1998  相似文献   

14.
Four experiments were conducted to test the effects of Eagle's non-essential amino acids (NEAA) and essential amino acids (EAA), glycine, and the RNA polymerase inhibitor α-amanitin, on the development of preimplantation rabbit embryos in modified protein-free KSOM medium. Embryos were distributed randomly into different treatments and cultured in 5% O2:5% CO2:90% N2. In experiment 1, 100% of the embryos became blastocysts in the medium with Eagle's IX NEAA and 0.5X EAA, but 100% stopped development at the morula stage in KSOM without amino acids. These morulae failed to develop further when transferred to amino acid supplemented medium after 72 hr of culture. Glycine alone in modified KSOM (experiment 2) was ineffective in supporting development of 8–16-cell stage embryos past the morula stage. In experiment 3, the addition of IX NEAA and 0.5X EAA at 0, 12, 24, 36, and 48 hr of culture resulted, respectively, in 57, 65, 65, 44, and 14% blastocysts on Day 3 (P<0.05) and 86, 77, 77, 78, and 69% on Day 5 (P<0.05). Omission of Eagle's amino acids until 48 hr clearly delayed embryo development. In experiment 4, when α-amanitin (20 μM) was added to the medium containing Eagle's amino acids after 0, 12, 24, 36, and 48 hr of culture most embryos cleaved only once or twice after adding the α-amanitin. Without the inhibitor, 94% of the zygotes developed into blastocysts. These results indicate that modified KSOM or KSOM plus glycine could not support rabbit embryo development past the morula stage, but this block was overcome by adding Eagle's amino acids. An exogenous source of amino acids was not critical for embryo development during the first 24 hr of culture, but was required after that for development to equal controls. Addition of α-amanitin at multiple pre-blastocyst stages limited further embryo development to one or two cleavage divisions, with no blastocyst development. © 1996 Wiley-Liss, Inc.  相似文献   

15.
A comparative study of four peptidomimetics of the sequence Phe-Met-Arg-Phe-amide (FMRFa) was performed to compare the conformational bias caused by trans-2,3-methanomethionine and α-methylmethionine stereoisomers. The specific compounds studied were F[(2S,3S)-cyclo-M] RFa, F[(2R,3R)-cyclo-M]RFa, F[(S)-α-MeM]RFa, and F[(R)-α-MeM]RFa. Molecular simulations based on CHARMm 22 indicate that γ-turn, inverse γ-turn, and α-helical conformations about the cyclo-M residue are accessible to the two F[cyclo-M]RFa stereoisomers. Similar calculations for F[(S)-α-MeM]RFa, and F[(R)-α-MeM]RFa indicate that the α-methylamino acids tend to favor α-helical conformations. The nmr data is presented for the four peptidomimetics. Most informative were the rotating frame nuclear Overhauser effect cross peaks between the NH protons proximal to the methionine surrogates, and the Cβ hydrogens. Overall, these nmr data indicate F[(2S,3S)-cyclo-M]RFa and F[(2R,3R)-cyclo-M]RFa preferentially adopt inverse γ-turn and γ-turn conformations, respectively, whereas F[(S)-α-MeM]RFa and F[(R)-α-MeM]RFa tend to form partial left- and right-handed helical structures (although energy differences between the two turn structures, and between the two helical structures are likely to be small). It is suggested that the wider NH-Cα-CO angle of cyclopropane amino acids and their more severe steric requirements around the Cβ carbons force the peptidomimetic N- and C-termini into the same region of conformational space. This favors C7 turns in the cyclopropane amino acid series relative to the less constrained α-methyl derivatives. © 1997 John Wiley & Sons, Inc. Biopoly 42: 439–453, 1997  相似文献   

16.
The β‐amyloid peptides (Aβ), Aβ1–40 and Aβ1–42, have been implicated in Alzheimer's disease (AD) pathology. Although Aβ1–42 is generally considered to be the pathological peptide in AD, both Aβ1–40 and Aβ1–42 have been used in a variety of experimental models without discrimination. Here we show that monomeric or oligomeric forms of the two Aβ peptides, when interact with the neuronal cation channel, α7 nicotinic acetylcholine receptors (α7nAChR), would result in distinct physiologic responses as measured by acetylcholine release and calcium influx experiments. While Aβ1–42 effectively attenuated these α7nAChR‐dependent physiology to an extent that was apparently irreversible, Aβ1–40 showed a lower inhibitory activity that could be restored upon washings with physiologic buffers or treatment with α7nAChR antagonists. Our data suggest a clear pharmacological distinction between Aβ1–40 and Aβ1–42. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 25–30, 2003  相似文献   

17.
A variety of host L -alanine homo-peptides (to the pentamer) containing one or two spin-labelled TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) residues were synthesized by solution methods and fully characterized. The conformational features of the terminally blocked, doubly spin-labelled–TOAC–(Ala)2–TOAC–Ala– pentapeptide were examined in the crystal state by X-ray diffraction and in solution using a combination of techniques (Fourier transform infrared, circular dichroism, cyclic voltammetry and electron spin resonance) in comparison with singly labelled shorter peptides. The 310-helical structure of the pentapeptide, promoted by the two Cα,α-disubstituted glycines under favourable experimental conditions, allows an interaction to take place between the two nitroxide TOAC side chains spaced by one turn of the helix. Taken together, these results suggest that TOAC is an excellent probe for exploring bends and helices in doubly labelled peptides.  相似文献   

18.
Free amino acids and γ-glutamyl peptides have been examined in 116 species of Iridaceae. 3-(3-Carboxyphenyl)-alanine, 3′-carboxyphenylglycine and γ-glutamyl peptides occur widely in the subfamily Iridoideae but have not been found in the two other subfamilies, Ixioideae and Sisyrinchoideae. The two aromatic amino acids occur in varying concentrations in species within the Irideae and Tigrideae. The γ-glutamyl peptides are distributed in a distinct pattern within the Irideae. The results are discussed in relation with botanical classification of the subfamily Irioideae and with existing knowledge on the occurrence, biosynthesis and degradation of the aromatic amino acids and the γ-glutamyl peptides.  相似文献   

19.
Six analogs (peptides 1-6) of the potent substance P (SP) derivative known as 'Antagonist D' were synthesized by substituting constrained amino acids Aib or Acp (cycloleucine, 1-amino cyclopentane carboxylic acid) at different positions in the Antagonist D sequence: D-Arg(1)-Pro(2)-Lys(3)-Pro(4)-D-Phe(5)-Gln(6)-D-Trp(7)-Phe(8)-D-Trp(9)-Leu(10)-Leu(11)-NH(2). In the preliminary in vitro antiproliferative screening of the analogs on different human cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, peptide 1 was found to be the most active. Further, peptide 1 was butanoylated (analog 5) or octanoylated (analog 6) at the N-terminus. SP analogs 1, 5, and 6 were evaluated in vivo in a xenograft model of human primary colon tumor (PTC) cell line in athymic nude mice and were found to cause tumor regression. This study investigates if the use of the constrained amino acids Aib and Acp in the designed SP analogs can retain the in vitro and in vivo anticancer activities, which could be useful in cancer therapy and drug targeting. Further, the strategy of incorporation of Aib or Acp in biologically active peptides can be exploited in determining the receptor-bound conformation and in transforming these bioactive peptides into pharmacologically useful drugs.  相似文献   

20.
The labyrinthopeptins are a new class of lantibiotics containing two identical quaternary α,α‐disubstituted amino acids, named labionin (Lab). The synthetic formation of this unique structural feature represents the key step in the total synthesis of these polycyclic peptides. In this report we describe the synthesis of an orthogonally protected α,α‐disubstituted amino acid building block serving as labionin precursor for the future assembly of labyrinthopeptin A2 and of other labyrinthopeptin derivatives. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号