首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The olfactory epithelium in vertebrates generates the olfactory sensory neurons and several migratory cell types. Prominent among the latter are the gonadotropin-releasing hormone (GnRH) neurons that differentiate within the olfactory epithelium during embryogenesis and migrate along the olfactory nerve to the central nervous system. We initiated studies to characterize additional neuronal phenotypes of olfactory epithelial derivation. Neuropeptide Y (NPY) neurons are functionally related to the reproductive axis, modulating the release of GnRH and directly enhancing GnRH-induced luteinizing hormone (LH) secretion from gonadotrophs. We demonstrate that a population of migratory NPY neurons originates within the olfactory epithelium of the chick. At stage 25, NPY-positive fibers, but not cells, were detected in the epithelium and the nerve. By stages 28–34, NPY neurons and processes were present in the olfactory epithelium, olfactory nerve, and at the junction of the olfactory nerve and forebrain. In these regions the number of NPY neurons increased until stage 30 and then declined as development progressed. Electron microscopic immunocytochemistry confirmed the neuronal phenotype of the NPY-positive cells. The origin and migratory nature of some of these NPY cells was confirmed by double-label immunocytochemical detection of NPY and GnRH. A large percentage of the NPY-cells coexpressed the GnRH peptide. Between stages 28 and 34 single- and double-labeled NPY and GnRH neurons were found side by side along the GnRH migratory route emanating from the nasal epithelium, along the olfactory nerve, and into the ventral forebrain. These data suggest that an NPY population originates in the olfactory epithelium and migrates into the central nervous system during embryogenesis. By stage 42, no NPY/GnRH double-labeled cells were detected. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Summary 1. GnRH neurons migrate from olfactory placode into the developing basal forebrain in a manner which appears remarkably constant across all vertebrates studied, from fish to human beings.2. Interruption of this migration can result in Kallmann's Syndrome. Absence of libido by individuals suffering from Kallmann's has allowed us to chart a causal route from a specific gene to a human social behavior.  相似文献   

3.
目的: 以小鼠为实验动物研究精神分裂症易感基因Sox11对皮层神经元迁移的影响。方法: 应用实时荧光定量PCR、原位杂交等技术明确发育期 (E14.5, P0, P7, P14) Sox11于大脑皮层的表达模式;应用质粒构建、转染、胚胎电转、免疫荧光染色等技术,对不同时期 (E17.5, P0, P4, P7) 的小鼠分别转染对照shRNA质粒、mSox11 shRNA质粒和mSox11 shRNA干扰恢复后质粒,研究Sox11在神经元放射性迁移中的作用。结果: 与对照组神经元相比,转染mSox11 shRNA的神经元迁移明显延迟。当对照组神经元有一部分已经到达新皮层的表层时,大部分转染mSox11 shRNA的神经元仍停留在新皮层中间区;使用大鼠Sox11基因 (rSox11) 过表达载体对小鼠Sox11基因的干扰进行恢复后,神经元迁移完成后的分布情况与对照基本一致。小鼠Sox11干扰后和干扰恢复后,室管膜下区 (SVZ)、中间区 (IZ) 和皮层板 (CP) 内迁移神经元分布具有显著性差异 (P<0.01)。结论: Sox11可以促进皮层神经元的迁移,提示Sox11在小鼠皮层神经元迁移过程中发挥重要功能。  相似文献   

4.
5.
Changes in neuronal structure can contribute to the plasticity of neuronal connections in the developing and mature nervous system. However, the expectation that they would occur slowly precluded many from considering structural changes as a mechanism underlying synaptic plasticity that occurs over a period of minutes to hours. We took time-lapse confocal images of retinotectal axon arbors to determine the timecourse, magnitude, and distribution of changes in axon arbor structure within living Xenopus tadpoles. Images of axons were collected at intervals of 3 min, 30 min, and 2 h over total observation periods up to 8 h. Branch additions and retractions in arbors imaged at 3- or 30-min intervals were confined to shorter branches. Sites of additions and retractions were distributed throughout the arbor. The average lifetime of branches was about 10 min. Branches of up to 10 μm could be added to the arbor within a single 3-min observation interval. Observations of arbors at 3-min intervals showed rapid changes in the structure of branchtips, including transitions from lamellar growth cones to more streamlined tips, growth cone collapse, and re-extension. Simple branchtips were motile and appeared capable of exploratory behavior when viewed in time-lapse movies. In arbors imaged at 2-h intervals over a total of 8 h, morphological changes included longer branches, tens of microns in length. An average of 50% of the total branch length in the arbor was remodeled within 8 h. The data indicate that the elaboration of the arbor occurs by the random addition of branches throughout the arbor, followed by the selective stabilization of a small fraction of the new branches and the retraction of the majority of branches. Stabilized branches can then elongate and support the addition of more branches. These data show that structural changes in presynaptic axons can occur very rapidly even in complex arbors and can therefore play a role in forms of neuronal plasticity that operate on a timescale of minutes. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
7.
During cerebral development, neurons are generated near the ventricle and then migrate toward the pial surface. In this review, we describe the method of in utero electroporation, this method allows the morphology of the migrating neurons to be visualized and the effect of overexpression or knock down of any gene to be examined. After electroporation of a green fluorescent protein (GFP) expression vector by this method, GFP-positive cells are first found in the ventricular zone, and their distribution then gradually shift toward the pial surface. A few days later, most of the GFP positive cells were aligned beneath the marginal zone, with the normal course of cortical neuronal migration.  相似文献   

8.
Gamma‐aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate‐limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin‐releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1–7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock‐out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 249–270, 2015  相似文献   

9.
Persistent neurogenesis in the central olfactory pathway characterizes many reptant decapods such as lobsters, crayfish and crabs. In these animals, the deutocerebral proliferative system generates new neurons which integrate into the neuronal network of the first order processing neuropil of the olfactory system, the deutocerebral chemosensory lobes (also called olfactory lobes). However, differences concerning the phenotype and the mechanisms that drive adult neurogenesis were reported in crayfish versus spiny lobsters. While numerous studies have focussed on these mechanisms and regulation of adult neurogenesis, investigations about the phylogenetic distribution are missing. To contribute an evolutionary perspective on adult neurogenesis in decapods, we investigated two representatives of basally diverging lineages, the dendrobranchiate Penaeus vannamei and the caridean Crangon crangon using the thymidine analogue Bromodeoxyuridine (BrdU) as marker for the S phase of cycling cells. Compared to reptant decapods, our results suggest a simpler mechanism of neurogenesis in the adult brain of dendrobranchiate and caridean shrimps. Observed differences in the rate of proliferation and spatial dimensions are suggested to correlate with the complexity of the olfactory system. We assume that a more complex and mitotically more active proliferative system in reptant decapods evolved with the emergence of another processing neuropil, the accessory lobes. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

10.
An intriguing question in developmental biology is how epidermal pattern formation processes are established and what are the molecular mechanisms involved in these events. The establishment of the pattern is concomitant with the formation of ectodermal appendages, which involves complex interactions between the epithelium and the underlying mesenchyme. Among ectodermal appendages, hair follicles are the “mini organs” that produce hair shafts. Several developmental and structural features are common to all hair follicles and to the hair shaft they produce. However, many different hair types are produced in a single organism. Also, different characteristics can be observed depending on the part of the body where the hair follicle is formed. Here, we review the mechanisms involved in the patterning of different hair types during mouse embryonic development as well as the influence of the body axes on hair patterning. Birth Defects Research (Part C) 87:263–272, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Neuropilin-1 (NRP1) is a receptor for two unrelated ligands with disparate activities, vascular endothelial growth factor-165 (VEGF165), an angiogenesis factor, and semaphorin/collapsins, mediators of neuronal guidance. To determine whether semaphorin/collapsins could interact with NRP1 in nonneuronal cells, the effects of recombinant collapsin-1 on endothelial cells (EC) were examined. Collapsin-1 inhibited the motility of porcine aortic EC (PAEC) expressing NRP1 alone; coexpressing KDR and NRP1 (PAEC/KDR/NRP1), but not parental PAEC; or PAEC expressing KDR alone. The motility of PAEC expressing NRP1 was inhibited by 65-75% and this inhibition was abrogated by anti-NRP1 antibody. In contrast, VEGF165 stimulated the motility of PAEC/KDR/NRP1. When VEGF165 and collapsin-1 were added simultaneously to PAEC/KDR/NRP1, dorsal root ganglia (DRG), and COS-7/NRP1 cells, they competed with each other in EC motility, DRG collapse, and NRP1-binding assays, respectively, suggesting that the two ligands have overlapping NRP1 binding sites. Collapsin-1 rapidly disrupted the formation of lamellipodia and induced depolymerization of F-actin in an NRP1-dependent manner. In an in vitro angiogenesis assay, collapsin-1 inhibited the capillary sprouting of EC from rat aortic ring segments. These results suggest that collapsin-1 can inhibit EC motility as well as axon motility, that these inhibitory effects on motility are mediated by NRP1, and that VEGF165 and collapsin-1 compete for NRP1-binding sites.  相似文献   

12.
Newborn neurons maintain a very simple, bipolar shape, while they migrate from their birthplace toward their destinations in the brain, where they differentiate into mature neurons with complex dendritic morphologies. Here, we report a mechanism by which the termination of neuronal migration is maintained in the postnatal olfactory bulb (OB). During neuronal deceleration in the OB, newborn neurons transiently extend a protrusion from the proximal part of their leading process in the resting phase, which we refer to as a filopodium‐like lateral protrusion (FLP). The FLP formation is induced by PlexinD1 downregulation and local Rac1 activation, which coincide with microtubule reorganization and the pausing of somal translocation. The somal translocation of resting neurons is suppressed by microtubule polymerization within the FLP. The timing of neuronal migration termination, controlled by Sema3E‐PlexinD1‐Rac1 signaling, influences the final positioning, dendritic patterns, and functions of the neurons in the OB. These results suggest that PlexinD1 signaling controls FLP formation and the termination of neuronal migration through a precise control of microtubule dynamics.  相似文献   

13.
14.
The rodent olfactory epithelium expresses more than 1000 odorant receptors (ORs) with distinct patterns, yet it is unclear how such patterns are established during development. In the current study, we investigated development of the expression patterns of different ORs in the septal organ, a small patch of olfactory epithelium predominantly expressing nine identified ORs. The presumptive septal organ first appears at about embryonic day 16 (E16) and it completely separates from the main olfactory epithelium (MOE) at about postnatal day 7 (P7). Using in situ hybridization, we quantified the densities of the septal organ neurons labeled by specific RNA probes of the nine abundant OR genes from E16 to postnatal 3 months. The results indicate that olfactory sensory neurons (OSNs) expressing different ORs have asynchronous temporal onsets. For instance, MOR256-17 and MOR236-1 cells are present in the septal organ at E16; however, MOR0-2 cells do not appear until P0. In addition, OSNs expressing different ORs show distinct developmental courses and reach their maximum densities at different stages ranging from E16 (e.g. MOR256-17) to 1 month (e.g. MOR256-3 and MOR235-1). Furthermore, early onset does not correlate with high abundance in adult. This study reveals a dynamic composition of the OSNs expressing different ORs in the developing olfactory epithelium.  相似文献   

15.
16.
Proper migration of neuronal somas and axonal growth cones to designated locations in the developing brain is essential for the assembly of functional neuronal circuits.Rapid progress in research of axon guidance and neuronal migration has been made in the last twenty years.Chinese researchers began their exploration in this field ten years ago and have made significant contributions in clarifying the signal transduction of axon guidance and neuronal migration.Several unique experimental approaches,includin...  相似文献   

17.
Olfactory sensory neurons (OSNs) in the nose form precise connections with neurons in the brain. However, mechanisms that account for the formation of such precise neuronal connections are incompletely understood. Recent studies implicate the function of Wnt growth factors in the formation of neuronal connections. To assess the role of Wnt signaling in the olfactory system, we examined the expression of beta-galactosidase (beta-gal) in the TOPGAL mouse, a transgenic strain in which beta-gal expression reports the activation of the canonical Wnt signaling pathway. In the olfactory epithelium, no beta-gal expression was observed at any developmental stages. In the olfactory bulb (OB), beta-gal expression was observed in a population of cells located at the interface of the olfactory nerve layer and the glomerular layer. The beta-gal expression was developmentally regulated with the peak expression occurring at late embryonic and early postnatal stages and a greatly reduced expression in adulthood. Further, forced OSN regeneration and subsequent reinnervation of the OB led to a reactivation of beta-gal expression in mature animals. The temporal coincidence between the peak of beta-gal expression and formation of OSN connections, together with the spatial localization of these cells, suggests a potential role of these cells and canonical Wnt signaling in the formation of OSN connections in the OB during development and regeneration.  相似文献   

18.
During central nervous system development, neurons differentiate distinct axonal and dendritic processes whose outgrowth is influenced by environmental cues. Given the known intrinsic differences between axons and dendrites and that little is known about the response of dendrites to inhibitory cues, we tested the hypothesis that outgrowth of differentiating axons and dendrites of hippocampal neurons is differentially influenced by inhibitory environmental cues. A sensitive growth cone behavior assay was used to assess responses of differentiating axonal and dendritic growth cones to oligodendrocytes and oligodendrocyte- derived, myelin-associated glycoprotein (MAG). We report that >90% of axonal growth cones collapsed after contact with oligodendrocytes. None of the encounters between differentiating, MAP-2 positive dendritic growth cones and oligodendrocytes resulted in growth cone collapse. The insensitivity of differentiating dendritic growth cones appears to be acquired since they develop from minor processes whose growth cones are inhibited (nearly 70% collapse) by contact with oligodendrocytes. Recombinant MAG(rMAG)-coated beads caused collapse of 72% of axonal growth cones but only 29% of differentiating dendritic growth cones. Unlike their response to contact with oligodendrocytes, few growth cones of minor processes were inhibited by rMAG-coated beads (20% collapsed). These results reveal the capability of differentiating growth cones of the same neuron to partition the complex molecular terrain they navigate by generating unique responses to particular inhibitory environmental cues.  相似文献   

19.
Drebrin is a well-known side-binding protein of F-actin in the brain. Immunohistochemical data suggest that the peripheral parts of growing axons are enriched in the drebrin E isoform and mature axons are not. It has also been observed that drebrin E is concentrated in the growth cones of PC12 cells. These data strongly suggest that drebrin E plays a role in axonal growth during development. In this study, we used primary hippocampal neuronal cultures to analyze the role of drebrin E. Immunocytochemistry showed that within axonal growth cones drebrin E specifically localized to the transitional zone, an area in which dense networks of F-actins and microtubules overlapped. Over-expression of drebrin E caused drebrin E and F-actin to accumulate throughout the growth cone and facilitated axonal growth. In contrast, knockdown of drebrin E reduced drebrin E and F-actin in the growth cone and prevented axonal growth. Furthermore, inhibition of myosin II ATPase masked the promoting effects of drebrin E over-expression on axonal growth. These results suggest that drebrin E plays a role in axonal growth through actin–myosin interactions in the transitional zone of axonal growth cones.  相似文献   

20.
During development, elimination of excess cells through programmed cell death (PCD) is essential for the establishment and maintenance of the nervous system. In many brain regions, development and major histogenesis continue beyond postnatal stages, and therefore, signs of neurogenesis and PCD are frequently observed in these postnatal brain regions. Furthermore, some brain regions maintain neurogenic potential throughout life, and continuous genesis and PCD play critical roles in sculpting these adult neural circuits. Although similar regulatory mechanisms that control PCD during development appear to also control PCD in the adult brain, adult-generated neurons must integrate into mature neural circuits for their survival. This novel requirement appears to result in unique features of PCD in the adult brain. In this article, we summarize recent findings related to PCD in the early postnatal and adult brain in rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号