首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《Developmental neurobiology》2017,77(12):1430-1441
The α2‐glycine receptors (GlyRs) play important roles during early central nervous system development. However, these receptors’ possible involvement in neurodevelopmental events occurring in the adult brain remains to be explored. Adult hippocampal neurogenesis (AHN) is the process by which new granule cell neurons are added to the dentate gyrus (DG) throughout adulthood. In this study, we observed that hippocampal adult neural stem cells (ANSCs) express α2‐containing GlyRs. Pharmacological inhibition of GlyRs by strychnine or picrotoxin decreased the proliferation of ANSCs, both in vivo and in vitro . Mice knockout for glra2 , the gene coding for the GlyR α2 subunit, were determined to display impaired AHN, and this phenomenon was accompanied by deficits in spatial memory. These results, which reveal neurodevelopmental roles for α2‐GlyRs in the adult brain, may be clinically relevant, given that a mutation in GLAR2 , as well as AHN impairments, have been reported in autism spectrum disorder. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1430–1441, 2017  相似文献   

2.
Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their roles in synaptic transmission are unclear. In this study, we examined the effect of GlyR activation on paired-pulse stimulation of the whole-cell postsynaptic currents (PSCs) in the Schaffer-CA1 synapses in rat hippocampal slices. Bath application of glycine reduced the amplitude of PSCs, accompanied by an increase in holding current and resting conductance. Moreover, glycine application increased the paired-pulse ratio (PPR) of PSCs significantly, an effect largely abolished by the GlyR specific antagonist strychnine. Interestingly, glycine application had no significant effect on either the amplitude or the PPR of excitatory postsynaptic currents (EPSCs). Our findings suggest that GlyR activation regulates hippocampal short-term plasticity by altering GABAergic neurotransmission.  相似文献   

3.
The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha(1) homomeric and alpha(1)beta heteromeric glycine receptors (GlyRs). At low (0.03 microm) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (> or =0.03 microm) concentrations it irreversibly activated both alpha(1) homomeric and alpha(1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin. Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.  相似文献   

4.
We have investigated the effect of chemical reagents that modify sulfhydryl groups on the ligand binding properties of the glycine receptor (GlyR). The Hill coefficient (nH) for the displacement of [3H]strychnine binding by glycine was increased from approximately 0.8 to values significantly above 1 (approximately 1.2-1.4) in membranes pretreated with the disulfide-reducing agent dithiothreitol or glutathione. However, the affinity of strychnine or glycine for the GlyR was not affected by these treatments. This indicates that several glycine binding sites interact cooperatively for displacing bound strychnine under such experimental circumstances. A similar increase in the nH for glycine has been observed when the temperature of the binding assay was increased to 37 degrees C. Combination of dithiothreitol pretreatment and increased binding temperature led to nH variations similar to those observed with either of these treatments alone, a finding suggesting that their mechanisms of action are not independent. Conversely, modification of rat spinal cord membranes or of purified and reconstituted GlyR preparations with the sulfhydryl-alkylating agent N-ethylmaleimide or fluorescein-maleimide decreased nH values to approximately 0.5, without affecting glycine or strychnine affinities. This effect may be caused by an increased heterogeneity of GlyR populations. It is interesting that occupancy of the receptor by glycine or beta-alanine (but not by antagonists) specifically protects from the effects of the different sulfhydryl reagents. Moreover, the presence of some of the Eccles' anions, i.e., anions that permeate through the channels associated with GlyRs and gamma-aminobutyric acidA receptors, seems to be required for the action of both dithiothreitol and N-ethylmaleimide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Inhibitory glycine receptors (GlyRs) are mainly expressed in the spinal cord and in the midbrain, where they control motor and sensory pathways. We describe here a fast potentiation of GlyR by intracellular Ca2+. This phenomenon was observed in rat spinal cord neurons and in transfected human cell lines. Potentiation develops in <100 ms, is proportional to Ca2+ influx, and is characterized by an increase in GlyR apparent affinity for glycine. Phosphorylation and G protein pathways appear not to be involved in the potentiation mechanism. Single-channel recordings in cell-attached and excised patches, as well as whole-cell data suggest the presence of a diffusible cytoplasmic factor that modulates the GlyR channel gating properties. Ca2+-induced potentiation may be important for rapid modulation of glycinergic synapses.  相似文献   

6.
Presynaptic glycine receptors (GlyRs) have been implicated in the regulation of glutamatergic synaptic transmission. Here, we characterized presynaptic GlyR-mediated currents by patch-clamp recording from mossy fiber boutons (MFBs) in rat hippocampal slices. In MFBs, focal puff-application of glycine-evoked chloride currents that were blocked by the GlyR antagonist strychnine. Their amplitudes declined substantially during postnatal development, from a mean conductance per MFB of ∼600 pS in young to ∼130 pS in adult animals. Single-channel analysis revealed multiple conductance states between ∼20 and ∼120 pS, consistent with expression of both homo- and hetero-oligomeric GlyRs. Accordingly, estimated GlyRs densities varied between 8-17 per young, and 1-3 per adult, MFB. Our results demonstrate that functional presynaptic GlyRs are present on hippocampal mossy fiber terminals and suggest a role of these receptors in the regulation of glutamate release during the development of the mossy fiber - CA3 synapse.  相似文献   

7.
Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, β-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of β-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that β-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.  相似文献   

8.
In the mammalian central nervous system, the neurotransmitter, glycine, acts both on an inhibitory, strychnine-sensitive receptor (GlyR) and an excitatory, strychnine-insensitive site at the NMDA receptor. Here we present electrophysiological evidence that the strychnine-sensitive glycine agonists, glycine and taurine, and the antagonist, strychnine, affect the endodermal rhythmic potential (RP) system and that the ectodermal contraction burst (CB) pacemaker system is modulated by glycine and strychnine in hydra. The RP and CB pacemaker systems are responsible for the respective elongation and contraction of hydra's body column. Activity of the CB system, quantified by the rate of contraction bursts (CBs), the number of pulses per contraction burst (P/CB), and the duration of bursts, was decreased by glycine. Glycine, coadministered with the strychnine-insensitive glycine site blocker, indole-2-carboxylic acid (I2CA), decreased RPs but not CBs or P/CB. The effect was mimicked by taurine. Strychnine increased the duration of RP production, and decreased CB duration. The effect of glycine with I2CA was counteracted by strychnine. The results support the idea that a vertebrate-like GlyR may be involved in modulating activity of the endodermal RP system and suggest that a glycine site on an NMDA receptor may be involved in the CB system.  相似文献   

9.
I Pribilla  T Takagi  D Langosch  J Bormann    H Betz 《The EMBO journal》1992,11(12):4305-4311
Purified preparations of the inhibitory glycine receptor (GlyR) contain alpha and beta subunits, which share homologous primary structures and a common transmembrane topology with other members of the ligand-gated ion channel superfamily. Here, a beta subunit-specific antiserum was shown to precipitate the [3H]strychnine binding sites localized on alpha subunits from membrane extracts of both rat spinal cord and mammalian cells co-transfected with alpha and beta cDNAs. Further, inhibition of alpha homo-oligomeric GlyRs by picrotoxinin, a non-competitive blocker of ion flow, was reduced 50- to 200-fold for alpha/beta hetero-oligomeric receptors generated by cotransfection. Site-directed mutagenesis identified residues within the second predicted transmembrane segment (M2) of the beta subunit as major determinants of picrotoxinin resistance. These data implicate the M2 segment in blocker binding to and lining of the GlyR chloride channel.  相似文献   

10.
Abstract: Molecular mechanisms of zinc potentiation were investigated in recombinant human α1 glycine receptors (GlyRs) by whole-cell patch-clamp recording and [3H]strychnine binding assays. In the wild-type (WT) GlyR, 1 µ M zinc enhanced the apparent binding affinity of the agonists glycine and taurine and reduced their concentrations required for half-maximal activation. Thus, in the WT GlyR, zinc potentiation apparently occurs by enhancing agonist binding. However, analysis of GlyRs incorporating mutations in the membrane-spanning domain M1–M2 and M2–M3 loops, which are both components of the agonist gating mechanism, indicates that most mutations uncoupled zinc potentiation from glycine-gated currents but preserved zinc potentiation of taurine-gated currents. One such mutation in the M2–M3 loop, L274A, abolished the ability of zinc to potentiate taurine binding but did not inhibit zinc potentiation of taurine-gated currents. In this same mutant where taurine acts as a partial agonist, zinc potentiated taurine-gated currents but did not potentiate taurine antagonism of glycine-gated currents, suggesting that zinc interacts selectively with the agonist transduction pathway. The intracellular M246A mutation, which is unlikely to bind zinc, also disrupted zinc potentiation of glycine currents. Thus, zinc potentiation of the GlyR is mediated via allosteric mechanisms that are independent of its effects on agonist binding.  相似文献   

11.
Strychnine-sensitive glycine receptors (GlyRs) mediate synaptic inhibition in the spinal cord, brainstem, and other regions of the mammalian central nervous system. In this minireview, we summarize our current view of the structure, ligand-binding sites, and chloride channel of these receptors and discuss recently emerging functions of distinct GlyR isoforms. GlyRs not only regulate the excitability of motor and afferent sensory neurons, including pain fibers, but also are involved in the processing of visual and auditory signals. Hence, GlyRs constitute promising targets for the development of therapeutically useful compounds.  相似文献   

12.
J Kuhse  V Schmieden  H Betz 《Neuron》1990,5(6):867-873
Agonist activation of the inhibitory glycine receptor (GlyR) in the adult vertebrate CNS is efficiently antagonized by the alkaloid strychnine. Here, we describe a novel rat GlyR alpha subunit cDNA (alpha 2*) that generates chloride channels of low strychnine sensitivity upon expression in Xenopus oocytes. Comparison with the highly homologous human alpha 2 polypeptide and site-directed mutagenesis identified a single amino acid exchange at position 167 that causes the altered pharmacology of alpha 2* receptors. Amplification by the polymerase chain reaction revealed a strong decrease in alpha 2* mRNA abundancy during postnatal spinal cord development. These data indicate that alpha 2* represents a ligand binding subunit of the previously identified neonatal GlyR isoform of low strychnine affinity.  相似文献   

13.
V Schmieden  J Kuhse    H Betz 《The EMBO journal》1992,11(6):2025-2032
The inhibitory glycine receptor (GlyR) is a pentameric chloride channel protein which mediates postsynaptic inhibition in the mammalian central nervous system. In spinal cord, different GlyR isoforms originate from the sequential expression of developmentally regulated variants of the ligand binding alpha subunit. Here, neonatal alpha 2 and adult alpha 1 subunits are shown to generate GlyRs with distinct agonist activation profiles upon heterologous expression in Xenopus oocytes. Whereas alpha 1 receptors are efficiently gated by beta-alanine and taurine, alpha 2 GlyRs show only a low relative response to these agonists, which also display a reduced sensitivity to inhibition by the glycinergic antagonist strychnine. Construction of an alpha 2/alpha 1 subunit chimera and site-directed mutagenesis of the extracellular region of the alpha 1 sequence identified amino acid positions 111 and 212 as important determinants of taurine activation. Our results indicate the existence of distinct subsites for agonists on alpha 1 and alpha 2 GlyRs and suggest that the ligand binding pocket of these receptor proteins is formed from discontinuous domains of their extracellular region.  相似文献   

14.
We studied 3H-glycine and 3H-strychnine specific binding to glycine receptor (GlyR) in intact isolated frog retinas. To avoid glycine binding to glycine uptake sites, experiments were performed at low ligand concentrations in a sodium-free medium. The binding of both radiolabeled ligands was saturated. Scatchard analysis of bound glycine and strychnine revealed a KD of 2.5 and 2.0 M, respectively. Specific binding of glycine was displaced by -alanine, sarcosine, and strychnine. Strychnine binding was displaced 50% by glycine, and sarcosine. Properties of the strychnine-binding site in the GlyR were modified by sarcosine. Binding of both radioligands was considerably reduced by compounds that inhibit or activate adenylate cyclase and increased cAMP levels. A phorbol ester activator of PKC remarkably decreased glycine and strychnine binding. These results suggest modulation of GlyR in response to endogenous activation of protein kinases A and C, as well as protein phosphorylation modulating GlyR function in retina.  相似文献   

15.
Inhibitory glycine receptors (GlyRs) are densely packed in the postsynaptic membrane due to a high-affinity interaction of their β-subunits with the scaffolding protein gephyrin. Here, we used an affinity-based proteomic approach to identify the trafficking proteins Vacuolar Protein Sorting 35 (Vps35) and Neurobeachin (Nbea) as novel GlyR β-subunit (GlyRβ) interacting proteins in rat brain. Recombinant Vps35 and a central fragment of Nbea bound to the large intracellular loop of GlyRβ in glutathione-S-transferase pull-downs; in addition, Vps35 displayed binding to gephyrin. Immunocytochemical staining of spinal cord sections revealed Nbea immunoreactivity apposed to and colocalizing with marker proteins of inhibitory synapses. Our data are consistent with roles of Vps35 and Nbea in the retrieval and post-Golgi trafficking of synaptic GlyRs and possibly other neurotransmitter receptors.  相似文献   

16.
The cation‐chloride co‐transporters are important regulators of the cellular Cl homeostasis. Among them the Na+‐K+?2Cl? co‐transporter (NKCC1) is responsible for intracellular chloride accumulation in most immature brain structures, whereas the K+‐Cl? co‐transporter (KCC2) extrudes chloride from mature neurons, ensuring chloride‐mediated inhibitory effects of GABA/glycine. We have shown that both KCC2 and NKCC1 are expressed at early embryonic stages (E11.5) in the ventral spinal cord (SC). The mechanisms by which KCC2 is prematurely expressed are unknown. In this study, we found that chronically blocking glycine receptors (GlyR) by strychnine led to a loss of KCC2 expression, without affecting NKCC1 level. This effect was not dependent on the firing of Na+ action potentials but was mimicked by a Ca2+‐dependent PKC blocker. Blocking the vesicular release of neurotransmitters did not impinge on strychnine effect whereas blocking volume‐sensitive outwardly rectifying (VSOR) chloride channels reproduced the GlyR blockade, suggesting that KCC2 is controlled by a glycine release from progenitor radial cells in immature ventral spinal networks. Finally, we showed that the strychnine treatment prevented the maturation of rhythmic spontaneous activity. Thereby, the GlyR‐activation is a necessary developmental process for the expression of functional spinal motor networks. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 764–779, 2016  相似文献   

17.
The glycine transporter subtype 1 (GlyT1) is widely expressed in astroglial cells throughout the mammalian central nervous system and has been implicated in the regulation of N-methyl-D-aspartate (NMDA) receptor activity. Newborn mice deficient in GlyT1 are anatomically normal but show severe motor and respiratory deficits and die during the first postnatal day. In brainstem slices from GlyT1-deficient mice, in vitro respiratory activity is strikingly reduced but normalized by the glycine receptor (GlyR) antagonist strychnine. Conversely, glycine or the GlyT1 inhibitor sarcosine suppress respiratory activity in slices from wild-type mice. Thus, during early postnatal life, GlyT1 is essential for regulating glycine concentrations at inhibitory GlyRs, and GlyT1 deletion generates symptoms found in human glycine encephalopathy.  相似文献   

18.
Synaptic glycine receptors (GlyRs) are hetero-pentameric chloride channels composed of α and β subunits, which are activated by agonist binding at subunit interfaces. To examine the pharmacological properties of each potential agonist-binding site, we substituted residues of the GlyR α(1) subunit by the corresponding residues of the β subunit, as deduced from sequence alignment and homology modeling based on the recently published crystal structure of the glutamate-gated chloride channel GluCl. These exchange substitutions allowed us to reproduce the βα, αβ and ββ subunit interfaces present in synaptic heteromeric GlyRs by generating recombinant homomeric receptors. When the engineered α(1) GlyR mutants were expressed in Xenopus oocytes, all subunit interface combinations were found to form functional agonist-binding sites as revealed by voltage clamp recording. The ββ-binding site displayed the most distinct pharmacological profile towards a range of agonists and modulators tested, indicating that it might be selectively targeted to modulate the activity of synaptic GlyRs. The mutational approach described here should be generally applicable to heteromeric ligand-gated ion channels composed of homologous subunits and facilitate screening efforts aimed at targeting inter-subunit specific binding sites.  相似文献   

19.
Glycine receptors (GlyRs) mediate inhibitory neurotransmission in spinal cord and brainstem. They are clustered at inhibitory postsynapses via a tight interaction of their β subunits (GlyRβ) with the scaffolding protein gephyrin. In an attempt to isolate additional proteins interacting with GlyRβ, we performed pulldown experiments with rat brain extracts using a glutathione S-transferase fusion protein encompassing amino acids 378–455 of the large intracellular loop of GlyRβ as bait. This identified syndapin I (SdpI) as a novel interaction partner of GlyRβ that coimmunoprecipitates with native GlyRs from brainstem extracts. Both SdpI and SdpII bound efficiently to the intracellular loop of GlyRβ in vitro and colocalized with GlyRβ upon coexpression in COS-7 cells. The SdpI-binding site was mapped to a proline-rich sequence of 22 amino acids within the intracellular loop of GlyRβ. Deletion and point mutation analysis disclosed that SdpI binding to GlyRβ is Src homology 3 domain-dependent. In cultured rat spinal cord neurons, SdpI immunoreactivity was found to partially colocalize with marker proteins of inhibitory and excitatory synapses. When SdpI was acutely knocked down in cultured spinal cord neurons by viral miRNA expression, postsynaptic GlyR clusters were significantly reduced in both size and number. Similar changes in GlyR cluster properties were found in spinal cultures from SdpI-deficient mice. Our results are consistent with a role of SdpI in the trafficking and/or cytoskeletal anchoring of synaptic GlyRs.  相似文献   

20.
Glycine and glycine receptors (GlyRs) were analyzed immunocytochemically in the retina of the frog Rana ridibunda. Glycine was localized to somata of glycinergic amacrine and interplexiform cells. Approximately 50% of the cells in the amacrine cell layer were found to be glycinergic. GlyRs of the inner plexiform layer (IPL) were localized to brightly fluorescent puncta, probably representing postsynaptic clusters of GlyRs. GlyR clusters were not evenly distributed across the IPL but showed patterns of stratification specific for the various GlyR subunits. Clusters containing the 1 subunit formed four narrow strata within the IPL. Clusters containing the 3 subunit were more abundant and covered the whole IPL, with a band of higher density in stratum 3. Clusters of GlyRs were also observed in the outer plexiform layer. Thus, several isoforms of synaptic GlyRs involved with different synapses and inhibitory circuits are present in the frog retina.This work was supported by the Deutsche Forschungsgemeinschaft SFB269/B4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号