首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmantal stress induces damage that activates an adaptive response in any organism. The cellular stress response is based on the induction of cytoprotective proteins, the so called stress or heat shock proteins. The stress response as well as stress proteins are ubiquitous, highly conserved mechanism, and genes, respectively, already present in prokaryotes. Chaperones protect the proteome against conformational damage, promoting the function of protein networks. Protein damage takes place during aging and in several degenerative diseases, and presents a threat to overload the cellular defense mechanisms. The preservation of a robust stress response and protein disposal is indispensable for health and longevity. This review summarizes the present knowledge of protein damage, turnover, and the stress response in aging and degenerative diseases.  相似文献   

2.
Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.  相似文献   

3.
4.
In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field.  相似文献   

5.
6.
7.
8.
9.
10.
Odani M  Komatsu Y  Oka S  Iwahashi H 《Cryobiology》2003,47(2):155-164
We studied the response of yeast cells after cryopreservation treatment using DNA microarray technology. Genes that contribute to "Cell rescue, defense and virulence," "energy," and "metabolism," were significantly induced. These genes were classified as encoding heat shock proteins, oxidative stress scavenger, and enzymes involved in glucose metabolism. The expression profile of mRNA after cryopreservation treatment was calculated to be closer to that following treatment with detergent or plant oils rather than by other stress factors such as heavy metals and agricultural chemicals. These results suggest that the cryopreservation treatment caused damage to the structure of the cell wall and cellular organelles. This was supported by the localization of the products of the induced genes at the cell wall and within cellular organelles.  相似文献   

11.
12.
Heat and various inhibitory chemicals were tested in Escherichia coli for the ability to cause accumulation of adenylylated nucleotides and to induce proteins of the heat shock (htpR-controlled), the oxidation stress (oxyR-controlled), and the SOS (lexA-controlled) regulons. Under the conditions used, heat and ethanol initiated solely a heat shock response, hydrogen peroxide and 6-amino-7-chloro-5,8-dioxoquinoline (ACDQ) induced primarily an oxidation stress response and secondarily an SOS response, nalidixic acid and puromycin induced primarily an SOS and secondarily a heat shock response, isoleucine restriction induced a poor heat shock response, and CdCl2 strongly induced all three stress responses. ACDQ, CdCl2, and H2O2 each stimulated the synthesis of approximately 35 proteins by factors of 5- to 50-fold, and the heat shock, oxidation stress, and SOS regulons constituted a minor fraction of the overall cellular response. The pattern of accumulation of adenylylated nucleotides during these treatments was inconsistent with a simple role for these nucleotides as alarmones sufficient for triggering the heat shock response, but was consistent with a role in the oxyR-mediated response.  相似文献   

13.
D H Lowenstein  P H Chan  M F Miles 《Neuron》1991,7(6):1053-1060
We used purified cultures of cerebellar granule cells to investigate the possible protective role of stress proteins in an in vitro model of excitotoxicity. Initial experiments used one- and two-dimensional polyacrylamide gel electrophoresis to confirm the induction of typical stress protein size classes by heat shock, sodium arsenite, and the calcium ionophore A23187. Immunoblot analysis and immunocytochemistry verified the expression of the highly inducible 72 kd heat shock protein (HSP72). Granule cell cultures exposed to glutamate showed evidence of cellular injury that was prevented by the noncompetitive NMDA antagonist MK-801, yet glutamate did not induce a detectable stress protein response. Nonetheless, preinduction of heat shock proteins was associated with protection from toxic concentrations of glutamate. These results imply that the HSP72 expression observed in in vivo models of excitotoxicity may not be directly related to the effects of excitatory amino acids. However, the ability of stress protein induction to protect against injury from glutamate may offer a novel approach toward ameliorating damage from excitotoxins.  相似文献   

14.
Heat shock response and acute lung injury   总被引:5,自引:0,他引:5  
All cells respond to stress through the activation of primitive, evolutionarily conserved genetic programs that maintain homeostasis and assure cell survival. Stress adaptation, which is known in the literature by a myriad of terms, including tolerance, desensitization, conditioning, and reprogramming, is a common paradigm found throughout nature, in which a primary exposure of a cell or organism to a stressful stimulus (e.g., heat) results in an adaptive response by which a second exposure to the same stimulus produces a minimal response. More interesting is the phenomenon of cross-tolerance, by which a primary exposure to a stressful stimulus results in an adaptive response whereby the cell or organism is resistant to a subsequent stress that is different from the initial stress (i.e., exposure to heat stress leading to resistance to oxidant stress). The heat shock response is one of the more commonly described examples of stress adaptation and is characterized by the rapid expression of a unique group of proteins collectively known as heat shock proteins (also commonly referred to as stress proteins). The expression of heat shock proteins is well described in both whole lungs and in specific lung cells from a variety of species and in response to a variety of stressors. More importantly, in vitro data, as well as data from various animal models of acute lung injury, demonstrate that heat shock proteins, especially Hsp27, Hsp32, Hsp60, and Hsp70 have an important cytoprotective role during lung inflammation and injury.  相似文献   

15.
The heat shock response: life on the verge of death   总被引:1,自引:0,他引:1  
Organisms must survive a variety of stressful conditions, including sudden temperature increases that damage important cellular structures and interfere with essential functions. In response to heat stress, cells activate an ancient signaling pathway leading to the transient expression of heat shock or heat stress proteins (Hsps). Hsps exhibit sophisticated protection mechanisms, and the most conserved Hsps are molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. In this Review, we summarize the concepts of the protective Hsp network.  相似文献   

16.
沙门菌(Salmonella)是一种非常重要的食源性致病菌。由于食品基质的保护作用,有些沙门菌可以抵抗热胁迫而存活下来。存活细胞往往因为热胁迫或应激而导致细胞结构、生理特性、基因及蛋白表达发生变化,并会进一步对食品原料和加工环境造成持续污染。本文主要综述沙门菌在热胁迫前后细胞形态、菌体组分、细胞壁和细胞膜结构等方面的变化,结合基因和蛋白表达改变,探讨沙门菌在热胁迫下引起的热休克反应、抗逆性和致病性分子机制。  相似文献   

17.
18.
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer’s and Parkinson’s disease.  相似文献   

19.
Heat stress proteins (hsp) are induced by a variety of stimuli including elevated temperature, ischaemia, hypoxia, pressure overload and some chemicals. They help to maintain the metabolic and structural integrity of the cell, as a protective response to external stresses. They are known to protect the myocardium from the damaging effects of ischaemia and reperfusion. The heat stress response results in accumulation of heat stress proteins. The beneficial effects associated with their expression include improved endothelial and mechanical recovery of the ischaemic heart. In addition, preservation of high energy phosphates and reduction in infarct size. It has also been shown that critical amounts of hsp70 are necessary to ensure protection of the myocardium. However, questions remain regarding the biochemical mechanisms underlying this protective effect. Alterations in the cell metabolism and chaperone function of cells expressing heat shock proteins, are thought to be responsible. Despite the obvious clinical benefits related to the heat stress response in a clinical setting, the application of this phenomena remains limited. Heat, both quantitatively and qualitatively is one of the best inducers of heat stress proteins. However, the effects of heat stress are nonspecific and intracellular damage is a common occurrence. The search for alternative stimuli, particularly within the fields of pharmacotherapy or genetic manipulation may offer more viable options, if the heat stress response is take its place as an established strategy for myocardial protection.  相似文献   

20.
Stress can originate from a variety of sources (e.g., physical, chemical, etc.,) and cause protein denaturation, DNA damage and possibly death. In an effort to prevent such deleterious consequences, most organisms possess one or more ways to counteract or even prevent the harmful effect(s) from a given stressor. Such compensation by an organism is known as a stress response; this involves inhibition of housekeeping genes and subsequent activation of genes associated with the stress response. One of the most widely studied groups of stress response genes is a family of molecular chaperones known as heat shock proteins (HSPs). Work from our laboratory agrees with many other studies showing an age-related decline in stress-induced synthesis of HSPs. A decline in the availability and/or function of HSPs with age can lead to accumulation of damaged proteins, which in turn damages cells. Recently, our laboratory found a significant increase in mitochondrial damage as well as evidence of increased autophagy in rat hepatocytes following heat stress. These results, along with findings of increased protein nitration with age, suggest a major role for reactive nitrogen species (RNS) in both the decline in HSP induction and increased hepatocyte pathology observed in old rats following heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号