首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The adult skeleton and tadpole chondrocranium of the leptodcatylid frog, Ceratophrys cornuta (Ceratophryinae), are described in detail, including the ontogenetic development of the chondrocanium and the ossification sequence of the skeleton. The chondrocranium of the carnivorous larvae is unique in lacking a frontoparietal fontanelle and possessing a complete dorsal roof of cartilage. Furthermore, the chondrocranium is extremely robust, particularly those elements involved in the feeding mechanism; these include large palatoquadrate cartilages, stout Meckel's, supra- and infrarostral cartilages, and short, wide, cornua trabeculae. The chondrocranium of C. cornuta resembles that described for Ceratophrys cranwelli, but differs from the chondrocrania reported for the species of Lepidobatrachus. The large adult skull is hyperossified; most elements are fused into a single unit, and nearly all dermal elements are ornamented, casqued, and co-ossified. Calcification is present in nearly every cartilaginous element of the skeleton in larger (older) adults. Several osteological characters previously used in ceratophryine systematics, such as the otic ramus of the squamosal and the columella, are reassessed. Contrary to previous reports, the ossified, dorsal dermal shield above the vertebral column in many ceratophryine anurans is absent in C. cornuta. With few exceptions, the ossification sequence relative to metamorphosis is consistent with those that are known for other anurans. The squamosal arises from three distinct centers of ossification, including an otic element. The frontoparietal arises from two centers of ossification that fuse early in development. A robust postorbital arch is formed primarily by the otic flange of the frontoparietal, which articulates laterally with the medial border of the otic ramus of the squamosal. Changes in the timing of development, or heterochrony, are involved with the evolution of the unusual skull and skeleton of ceratophryine frogs. J Morphol 232:169–206, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
3.
Vera Candioti, M.F., Nuñez, J.J. and Úbeda, C. 2011. Development of the nidicolous tadpoles of Eupsophus emiliopugini (Anura: Cycloramphidae) until metamorphosis, with comments on systematic relationships of the species and its endotrophic developmental mode. —Acta Zoologica (Stockholm) 92 : 27–45. Species of Eupsophus are unique within Alsodinae in having nidicolous tadpoles. They are characterized by traits typical of generalized exotrophic (e.g., oral disc and spiracular tube) and endotrophic larvae (e.g., scant pigmentation and large hind limbs). The larval morphology and development of E. emiliopugini, including external, buccal, and musculoskeletal features, is described herein. Like the larvae of other alsodines, these larvae have four lingual and four infralabial papillae, quadratoethmoid process, and an m. rectus cervicis with a double insertion. Among the traits exclusive to the genus are: the absence of the pseudopterygoid process and quadrato‐orbital commissure; presence of the m. subarcualis rectus I with two slips; and presence of the m. subarcualis rectus II–IV inserting on Ceratobranchial II. The development and metamorphosis of Eupsophus include some characters that develop later (e.g., degeneration of mouthparts and chondrocranium with minimum calcification), characters that develop earlier (e.g., hind‐limb appearance and jaw and suspensorium ossification), and characters that develop at the same time (e.g., most external features and cranial muscles) than in most exotrophic species. Some distinctive characters (third lower labial ridge absent, general configuration of the hyobranchial skeleton, skeletal development with retention of larval traits) resemble those of other endotrophic species, and the precocious ossification of jaws and suspensorium is shared with several direct‐developing species among recent amphibians.  相似文献   

4.
5.
6.
7.
The larval chondrocranium of Spea multiplicata is described, as is the development and adult morphology of the skeleton. There are major modifications to the larval chondrocranium throughout development, including the presence of embryonic trabeculae in young tadpoles and significant reorganization of cartilaginous structures at metamorphosis. The first bone to ossify is the parasphenoid (Stage 35), followed by the presacral neural arches, ilium, and femur (Stage 36). By Stage 39, most of the postcranial elements have begun to ossify. Metamorphic climax is accomplished over three Gosner stages (39-41) and involves major modifications to the chondrocranium, as well as the appearance of three cranial elements (septomaxilla, nasal, and premaxilla). After metamorphosis, the exoccipital, vomer, dentary, angulosplenial, squamosal, pterygoid, sphenethmoid, ischium, and hyoid begin to ossify. The stapes, mentomeckelian, operculum, carpals, and tarsals do not appear until juvenile and adult stages. The development of the hyoid and cartilaginous condensations of the carpals and tarsals are described. In addition, phenotypic plasticity within the genus and the absence of a palatine (= neopalatine) bone are discussed.  相似文献   

8.
9.
10.
11.
A. Haas 《Zoomorphology》1999,119(1):23-35
Pyxicephalus adspersus , is exceptional among living frogs. Embryonic development, larval phase, and metamorphosis can be completed in 17 days at a temperature of 29°C. The metamorphosis only takes 5 days. The present study shows that, despite the unusually short larval phase in P. adspersus, the state of skeletal differentiation reached at the end of metamorphosis is similar to that of other frog species. There is no shift of cranial bone formation postmetamorphosis as could have been expected and is known from other species. The majority of compared species are particularly similar in the sequence of bone formation in the postcranial skeleton. However, there are clear differences among species in the timing of these events relative to the larval growth trajectory, absolute time, and certain developmental markers, such as external limb differentiation. For example, skeletogenesis and externally visible limb differentiation are only loosely integrated. Interspecific comparisons show that, in P. adspersus, the early onset of skeletal ossification is an unusual feature among frogs. Freshly metamorphosed froglets of P. adspersus are already distinct from comparable stages of other species in having strong jaws, fang-like teeth, and a squamosal-maxilla contact. The latter stabilizes the maxillary arcade and the suspensorium and might relate to the ability to catch and swallow very large vigorous prey, such as siblings, shortly after metamorphosis. The presence of a complete set of dermatocranial elements and postmetamorphic ossification of only the sphenethmoid and operculum are considered plesiomorphic features, whereas the much less completely ossified skulls of metamorphosed froglets, particularly in Bufo and Hamptophryne, are likely apo- morphic developmental traits within the Anura. Accepted: 11 January 1999  相似文献   

12.
《Journal of morphology》2017,278(12):1739-1753
Patterns of ossification and chondrification are well‐described for several species of turtles, but details of the chondrocranial anatomy are known for only a handful of species. Cleared and double‐stained embryos of Graptemys pseudogeographica were used to examine the fully formed chondrocranium and the formation, chondrification, and ossification of the cranium. The chondrocranium of G. pseudogeographica possesses an unusually large, irregularly shaped foramen epiphaniale that is joined with the fenestra olfactoria. As in other emydids, and many turtles generally, the taenia marginalis is present only as a small projection and the taenia medialis is lacking in mature stages of embryonic development. Ossification data for G. pseudogeographica are consistent with those of other Testudines in that the dentary and maxilla (dermal elements of the upper and lower jaws) ossify early, whereas the articular (an endochondral bone of the lower jaw) ossifies relatively late. Additionally, comparative ossification shows that the vomer is quite variable in its relative timing of ossification across Testudines.  相似文献   

13.
The skeletogenesis and osteology of the syncranium of the redeye tetra Moenkhausia sanctaefilomenae is described. Skeletal development is rapid, with many elements of the chondrocranium and splanchnocranium well formed prior to the onset of ossification. The chondrocranium develops from an initial set of cartilaginous precursors, and continued elaboration proceeds from a series of processes which expand and converge to form the floor of the cranial vault, the otic capsule, the supraorbital bridge and the ethmoid region. Prodigious growth is observed for a number of splanchnocranial elements, including the Meckel's cartilage and the ceratohyal cartilage. Ossification occurs in overlapping phases with initial ossification of the jaws and neurocranial floor followed by the splanchnocranium, the supraorbital bridges and the ethmoid and cranial vault. Teeth are observed primarily on the premaxilla and dentary, while a single tooth is present on the maxilla. Particular cartilages, which had originally formed in the early larva, appear to degenerate and have no ossified representative in the adult syncranium. The cranial development for M. sanctaefilomenae is compared to those of other characiforms.  相似文献   

14.
Summary Newly-metamorphosed individuals of some species of frogs and toads differ from adults in behavior, ecology, and physiology. These differences may be related to broader patterns of the life histories of different species of frogs. In particular, the length of larval life and the size of a frog at metamorphosis appear to be significant factors in post-metamorphic ontogenetic change. These changes in performance are associated with rapid post-metamorphic increases in oxygen transport capacity. Bufo americanus (American toads) and Rana sylvatica (wood frogs) spend only 2–3 months as tadpoles and metamorphose at body masses of 0.25 g or less. Individuals of these species improve endurance and aerobic capacity rapidly during the predispersal period immediately following metamorphosis. Increases in hematocrit, hemoglobin concentration, and heart mass relative to body mass are associated with this improvement in organismal performance. Rana clamitans (green frogs) spend from 3 to 10 months as larvae and weigh 3 g at metamorphosis. Green frogs did not show immediate post-metamorphic increases in performance. Rana palustris (pickerel frogs) are intermediate to wood frogs and green frogs in length of larval life and in size at metamorphosis, and they are intermediate also in their post-metamorphic physiological changes.American toads and wood frogs appear to delay dispersal from their natal ponds while they undergo rapid post-metamorphic growth and development, whereas green frogs disperse as soon as they leave the water, even before they have fully absorbed their tails. The very small body sizes of newly metamorphosed toads and wood frogs appear to limit the scope of their behaviors. The brief larval periods of these species permit them to exploit transient aquatic habitats, but impose costs in the form of a period of post-metamorphic life in which their activities are restricted in time and space compared to those of adults.  相似文献   

15.
We investigated the development of the whole skeleton of the soft‐shelled turtle Pelodiscus sinensis, with particular emphasis on the pattern and sequence of ossification. Ossification starts at late Tokita‐Kuratani stage (TK) 18 with the maxilla, followed by the dentary and prefrontal. The quadrate is the first endoskeletal ossification and appears at TK stage 22. All adult skull elements have started ossification by TK stage 25. Plastral bones are the first postcranial bones to ossify, whereas the nuchal is the first carapacial bone to ossify, appearing as two unstained anlagen. Extensive examination of ossification sequences among autopodial elements reveals much intraspecific variation. Patterns of ossification of cranial dermal elements are more variable than those of endochondral elements, and dermal elements ossify before endochondral ones. Differences in ossification sequences with Apalone spinifera include: in Pelodiscus sinensis the jugal develops relatively early and before the frontal, whereas it appears later in A. spinifera; the frontal appears shortly before the parietal in A. spinifera whereas in P. sinensis the parietal appears several stages before the frontal. Chelydrids exhibit an early development of the postorbital bone and the palatal elements as compared to trionychids. Integration of the onset of ossification data into an analysis of the sequence of skeletal ossification in cryptodirans using the event‐pairing and Parsimov methods reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa. A functional interpretation of heterochronies is speculative. In the chondrocranium there is no contact between the nasal capsules and planum supraseptale via the sphenethmoid commissurae. The pattern of chondrification of forelimb and hind limb elements is consistent with a primary axis and digital arch. There is no evidence of anterior condensations distal to the radius and tibia. A pattern of quasi‐ simultaneity is seen in the chondrogenesis of the forelimb and the hind limb. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
There are remarkable interspecific differences in the sizes of the larvae of Andean frogs of the genus Telmatobius. This size variation seems to be associated with the duration of the larval stage and may affect the hind-limb morphology in Telmatobius. Larval, juvenile, and adult Telmatobius rubigo and T. oxycephalus were examined to determine the variation in relative sizes of hind-limb elements, their growth patterns during postmetamorphic life, and skeletal ontogeny. The results showed that the proportionately shorter hind limbs of T. rubigo relative to those of T. oxycephalus are associated with the protracted development and ossification of hind limbs during the prolonged larval life of T. rubigo. Postmetamorphically, the hind limbs grew faster than the body in juveniles of both species in contrast to the relative growth rates of the hind limbs and bodies of the adults. The growth phase of juvenile T. rubigo seems shorter than that of juvenile T. oxycephalus; possibly, this heightens the difference in the relative lengths of hind limbs after metamorphosis. Temperature affects the effects of thyroid hormone on growth and development, and T. rubigo lives at much higher, colder elevations than does T. oxycephalus. It is not clear whether the developmental differences described here are plastic (i.e., environmentally induced) or genetically fixed in each species.  相似文献   

18.
Chondrocranial development in Ascaphus truei was studied by serial sectioning and graphical reconstruction. Nine stages (21–29; 9–18 mm TL) were examined. Mesodermal cells were distinguished from ectomesenchymal (neural crest derived) cells by retained yolk granules. Ectomesenchymal parts of the chondrocranium include the suprarostrals, pila preoptica, anterior trabecula, and palatoquadrate. Mesodermal parts of the chondrocranium include the orbital cartilage, posterior trabecula, parachordal, basiotic lamina, and otic capsule. Development of the palatoquadrate is as follows. The pterygoid process first connects with the trabecula far rostrally; their fusion progresses caudally. The ascending process connects with a mesodermal bar that extends from the orbital cartilage to the otic capsule, and forms the ventral border of the dorsal trigeminal outlet. This bar is the “ascending process” of Ascaphus adults; it is a neurocranial, not palatoquadrate structure. The basal process chondrifies in an ectomesenchymal strand running from the quadrate keel to the postpalatine commissure. Later, the postpalatine commissure and basal process extend anteromedially to contact the floor of the anterior cupula of the otic capsule, creating separate foramina for the palatine and hyomandibular branches of the facial nerve. Based on these data, and on comparison with other frogs and salamanders, the anuran anterior quadratocranial commissure is homologized with the pterygoid process of salamanders, the anuran basal process (=“pseudobasal” or “hyobasal” process) with the basal process of salamanders, and the anuran otic ledge with the basitrabecular process of salamanders. The extensive similarities in palatoquadrate structure and development between frogs and salamanders, and lacking in caecilians, are not phylogenetically informative. Available information on fossil outgroups suggests that some of these similarities are primitive for Lissamphibia, whereas for others the polarity is uncertain. J. Morphol. 231:63-100, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Postembryonic skeletal development of the pipid frog Xenopus laevis is described from cleared-and-stained whole-mount specimens and sectioned material representing Nieuwkoop and Faber developmental Stages 46-65, plus postmetamorphic individuals up to 6 months old. An assessment of variation of skeletogenesis within a single population of larvae and comparison with earlier studies revealed that the timing, but not the sequence, of skeletal development in X. laevis is more variable than previously reported and poorly correlated with the development of external morphology. Examination of chondrocranial development indicates that the rostral cartilages of X. laevis are homologous with the suprarostral cartilages of non-pipoid anurans, and suggests that the peculiar chondrocranium of this taxon is derived from a more generalized pattern typical of non-pipoid frogs. Derived features of skeletal development not previously reported for X. laevis include 1) bipartite formation of the palatoquadrate; 2) precocious formation of the adult mandible; 3) origin of the angulosplenial from two centers of ossification; 4) complete erosion of the orbital cartilage during the later stages of metamorphosis; 5) development of the sphenethmoid as a membrane, rather than an endochondral bone; and 6) a pattern of timing of ossification that more closely coincides with that of the pelobatid frog Spea than that recorded for neobatrachian species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号