首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were performed to characterize a prominent nuclear matrix (NM) protein isolated from tissue cultured mouse lens epithelial cells. This NM protein was separated by SDS-PAGE and the stained gel band was analyzed by mass spectroscopy. Blast analysis of the amino acid sequence derived by mass spectroscopy revealed the presence of Lamin C in the NM of the mouse lens epithelial cells. We also examined nuclear proteins of adult and fetal human lenses. Data collected from these experiments showed the presence of Lamin C in both adult and fetal lens cells. However fetal lens cells only show Lamin C dimers, whereas adult human lens contained dimers, monomers and degraded Lamin C. Early and late passaged tissue cultured mouse lens epithelial cells also contained Lamin C in the nucleus with a preponderance of the dimer in the early passaged cells. The biological significance of the presence of dimers in human fetal lens cells and early passaged mouse lens cells is not known. However, it could suggest an enhanced docking capability of Lamin C dimers for other physiologically important nuclear proteins.  相似文献   

2.
3.
Summary Although several proteases have been identified in homogenates of cultured epithelial cells of the eye lens and in lens tissues, there is little information regarding intracellular protein degradation in intact lens cells in vitro. Cultured lens cells may be useful in the study of intracellular protein degradation in the lens, a tissue with a wide range of protein half-lives. This is of interest because alterations in protein turnover in the lens have been implicated in cataract formation. This study examines intracellular protein degradation in cultured bovine lens epithelial cells (BLEC). Cell cultures were incubated with radiolabeled leucine to label intracellular proteins. Protein degradation was measured by monitoring the release of trichloroacetic-acid-soluble radioactivity into the culture medium. The average half-life of long-lived proteins (half-life >50 h) was typically about 57 h in serum-supplemented medium. Average rates of degradation of long-lived proteins increased by up to 73% when fetal bovine serum was withdrawn from the culture medium. Serum had no effect on the degradation of short-lived proteins (half-life <10 h). Degradation of long-lived proteins in the presence and absence of serum was further studied in cultured BLEC from population doubling level (PDL) 2 to 43. Average half-life of proteins in serum-supplemented medium was 52 to 58 h and did not vary significantly as a function of PDL. Degradation rates in serum-free medium increased approximately twofold up to PDL 7, but returned by PDL 25 to original levels, which were maintained through PDL 43. This work was supported in part by grants from U. S. Department of Agriculture contract 53-3K06-5-10, Massachusetts Lions Eye Research Fund, Inc., and the Daniel and Florence Guggenheim Foundation. D. A. E. is a recipient of a National Eye Institute postdoctoral fellowship.  相似文献   

4.
5.
Experiments were performed in our laboratory to study the effects of a mammalian 8 kD vitreous humor (VH) factor on the DNA synthesis and mitosis of the epithelial cells of organ cultured rabbit lens. The 8 kD polypeptide factor was purified from mature rabbit vitreous humor by liquid chromatography. Proliferative activities of the epithelial cells of organ cultured lenses were stimulated by 3% rabbit serum. The data from our experiments depicted that the 8 kD VH factor effectively inhibits DNA synthesis and mitosis by the epithelial cells of the organ cultured lens. Our experiments also showed that this 8 kD VH factor can maintain its growth inhibitory activity even when heated for 3 min at 95 degrees C. The growth inhibitory effect of the 8 kD VH factor was dose dependent. Using iodinated vitreal proteins it was demonstrated that the VH proteins are able to enter or bind to lens epithelial cells. The growth inhibitory effect of the 8 kD VH factor was also tested on tissue cultured lens epithelial cells. These experiments showed that the 8 kD VH factor has no growth inhibitory effect on the tissue cultured lens epithelial cells. This experiment has been repeated many times using different concentrations of the factor. These observations suggest that the 8 kD VH factor may have receptors in the lens capsular material (extracellular matrix) and the factor-receptor binding is essential for the growth inhibitory effect.  相似文献   

6.
7.
Summary Alterations in proteolytic capabilities have been associated with abnormalities in the aged eye lens, but in vivo tests of this hypothesis have been difficult to pursue. To simulate aging, we cultured cells from an 8-yr-old rabbit to early (population-doubling level 20 to 30) and late (population-doubling level > 125) passage. Long-lived (t1/2>10 h) and short-lived (t1/2<10 h) intracellular proteins were labeled with [3H]leucine, and the ability of the cells to mount a proteolytic response to the stress of serum withdrawal was determined. For early passage cells, the average t1/2 of long-lived proteins in the presence and absence of serum was 62 and 39 h, respectively. For late-passage cells, the average t1/2 of long-lived proteins in the presence and absence of serum was 58 and 43 h, respectively. The net increase in intracellular proteolysis in the absence of serum was 59 and 35% for early and late-passage cells, respectively. Thus, in vitro-aged rabbit lens epithelial cells mount only 60% the proteolytic response to serum removal shown in “younger” cells. The enhanced ability of early passage cells to respond to serum removal seems to involve lower homeostatic levels of proteolysis in the presence of serum and greater enhancement of proteolysis in the absence of serum. Less than 2% of the protein is in the pool of short-lived proteins. Rates of proteolysis of short-lived proteins in the presence and absence of serum were indistinguishable. With respect to basal proteolytic rates in the presence of serum and ability to mount a proteolytic response upon serum withdrawal, these rabbit lens epithelial cells are similar to bovine lens epithelial cells and fibroblasts. This work was supported in part by contract 53-3K06-5-10 U.S. Department of Agriculture, Washington, DC, Massachusetts Lions Eye Research FUnd, Inc., the Daniel and Florence Guggenheim Foundation, and a grant EY00362 from the National Eye Institute, Bethesda, MD.  相似文献   

8.
Summary The distribution and organization of the extracellular matrix (ECM) proteins laminin, fibronectin, entactin, and type IV collagen were investigated in primary colonies and secondary cultures of bovine lens epithelial cells using species-specific antisera and indirect immunofluorescence microscopy. Primary cell colonies fixed in formaldehyde and permeabilized with Triton X-100 displayed diffuse clonies. In contrast, thick bundles of laminin and fibronectin were located on the basal cellsurfaces and in between cells in the densely packed center of the colonies, and as “adhesive plaques” and fine extracellular matrix cords in the sparsely populated (migratory) outer edge of the colonies. The distribution of ECM proteins observed in secondary lens epithelial cell cultures was similar to that observed at the periphery of the primary colony. Extraction of the secondary cell cultures with sodium deoxycholate confirmed that laminin and fibronectin were deposited on the basal cell surface. Indeed, the patterns of laminin and fibronectin deposition suggested that these proteins codistribute. These results establish that lens epithelial cells in culture can be used as a model system to study the synthesis and extracellular deposition of the basement membrane proteins, laminin and fibronectin. Supported by Public Health Service grant EY05570 from the National Eye Institute Bethesda, MD.  相似文献   

9.
Proteins in basement membrane (BM) are long‐lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial‐to‐mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age‐dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC‐MS/MS. The TGFβ2‐mediated upregulation of the mRNA levels (by qPCR) of EMT‐associated proteins was significantly enhanced in cells cultured on AGE‐modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2‐mediated α‐smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2‐mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes‐associated fibrosis.  相似文献   

10.
11.
The Ocular Lens Epithelium   总被引:5,自引:0,他引:5  
Bhat SP 《Bioscience reports》2001,21(4):537-563
An adult lens contains two easily discernible, morphologically distinct compartments, the epithelium and the fiber-cell mass. The fiber-cell mass provides the lens with its functional phenotype, transparency. Metabolically, in comparison to the fiber cells the epithelium is the more active compartment of the ocular lens. For the purposes of this review we will only discuss the surface epithelium that covers the anterior face of the adult ocular lens. This single layer of cells, in addition to acting as a metabolic engine that sustains the physiological health of this tissue, also works as a source of stem cells, providing precursor cells, which through molecular and morphological differentiation give rise to fiber cells. Morphological simplicity, defined developmental history and easy access to the experimenter make this epithelium a choice starting material for investigations that seek to address universal questions of cell growth, development, epithelial function, cancer and aging. There are two important aspects of the lens epithelium that make it highly relevant to the modern biologist. Firstly, there are no known clinically recognizable cancers of the ocular lens. Considering that most of the known malignancies are epithelial in origin this observation is more than an academic curiosity. The lack of vasculature in the lens may explain the absence of tumors in this tissue, but this provides only a teleological basis to a very important question for which the answers must reside in the molecular make-up and physiology of the lens epithelial cells. Secondly, lens epithelium as a morphological entity in the human lens is first recognizable in the 5th–6th week of gestation. It stays in this morphological state as the anterior epithelium of the lens for the rest of the life, making it an attractive paradigm for the study of the effects of aging on epithelial function. What follows is a brief overview of the present status and lacunae in our understanding of the biology of the lens epithelium.  相似文献   

12.
Proteins with high affinity and capacity for calcium are present in the membranes of calf lens fiber and epithelial cells. They can be extracted from these membranes by means of EDTA or EGTA. The tissue specificity and localization of these 30-38 kD EDTA-extractable proteins (EEP) have been examined. Antibodies raised against calf lens fiber EEP specifically form immune complexes with distinct proteins of 30-38 kD in a great variety of non-lenticular tissues. By indirect immunofluorescence microscopy using anti-EEP antiserum, the EEP-like proteins could be detected in fibroblasts, retinal Müller cells, endothelial cells and some types of epithelial cells. Only covering epithelia (cornea, glomerulus) contained significant amounts of these proteins, irrespective of the shape of the cells. EEP-like proteins were absent in secreting epithelial cells of liver, kidney tubules and pancreas. In addition, they were not detected in muscle, nerve and fat cells, erythrocytes and lymphocytes. The localization and the number of EEP-like proteins varied among different cell types. In fibroblasts, containing only two EEP-like proteins (molecular weight (MW) 33.0 and 31.5 kD in calf tissue), predominantly the nucleus was stained. In vitro studies with permeabilized cultured fibroblasts from several species have shown that the nuclear staining was built up of bright spots around unstained nucleoli. In epithelial and endothelial cells of calf tissue, however, most fluorescent label was found in the plasma membranes. Immunoblotting experiments revealed the presence in these cell types of at least five EEP-like proteins, including a 33.0 and 31.5 kD component. The difference in staining pattern between these cells and fibroblasts might thus indicate that the nature or the localization of some of the EEP-like proteins is cell type-specific. Because of their extractability from various tissue membrane fractions by means of EDTA or EGTA it is suggested that at least part of the EEP-like proteins is bound to membrane structures via calcium. This characteristic feature, together with the MW values and the cross-reactivity with anti-EEP antiserum indicate that these proteins and the lens membrane proteins with high calcium-binding capacity share a very high degree of homology and may even be identical.  相似文献   

13.
The cell of origin of the nonparenchymal epithelioid cells that emerge in liver cell cultures is unknown. Cultures of rat hepatocytes and several types of nonparenchymal cells obtained by selective tissue dispersion procedures were typed with monoclonal antibodies to rat liver cytokeratin and vimentin, polyvalent antibodies to cow hoof cytokeratins and porcine lens vimentin, and monoclonal antibodies to surface membrane components of ductular oval cells and hepatocytes. Immunoblot analysis revealed that, in cultured rat liver nonparenchymal epithelial cells, the anti-rat hepatocyte cytokeratin antibody recognized a cytokeratin of relative mass (Mr) 55,000 and the anti-cow hoof cytokeratin antibody reacted with a cytokeratin of Mr 52,000, while the anti-vimentin antibodies detected vimentin in both cultured rat fibroblasts and nonparenchymal epithelial cells. Analyses on the specificity of anti-cytokeratin and anti-vimentin antibodies toward the various cellular structures of liver by double immunofluorescence staining of frozen tissue sections revealed unique reactivity patterns. For example, hepatocytes were only stained with anti-Mr 55,000 cytokeratin antibody, while the sinusoidal cells reacted only with the anti-vimentin antibodies. In contrast, epithelial cells of the bile ductular structures and mesothelial cells of the Glisson capsula reacted with all the anti-cytokeratin and anti-vimentin antibodies. It should be stressed, however, that the reaction of the anti-vimentin antibodies on bile ductular cells was weak. The same analysis on tissue sections using the anti-ductular oval cell antibody revealed that it reacted with bile duct structures but not with the Glisson capsula. The anti-hepatocyte antibody reacted only with the parenchymal cells. The differential reactivity of the anti-cytokeratin and anti-vimentin antibodies with the various liver cell compartments was confirmed in primary cultures of hepatocytes, sinusoidal cells, and bile ductular cells, indicating that the present panel of antibodies to intermediate filament constituants allowed a clear-cut distinction between cultured nonparenchymal epithelial cells, hepatocytes, and sinusoidal cells. Indirect immunofluorescence microscopy on nonfixed and paraformaldehyde-fixed cultured hepatocytes and bile ductular cells further confirmed that both anti-hepatocyte and anti-ductular oval cell antibodies recognized surface-exposed components on the respective cell types.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co‐culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non‐macromastic epithelial cells when co‐cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia‐derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co‐culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co‐cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy.  相似文献   

15.
The matricellular protein SPARC (also known as osteonectin and BM-40) is expressed abundantly in lens epithelium. That SPARC-null mice exhibit early cataractogenesis, indicates a role for SPARC in the maintenance of lens transparency. Comparison of cultured wild-type and SPARC-null lens epithelial cells revealed significant changes in adhesion to different substrates. SPARC-null lens cells displayed enhanced attachment and spreading, focal adhesion formation, and resistance to trypsin detachment in comparison to wild-type cells. In the absence of SPARC, there was increased deposition of the ECM protein laminin-1 (LN-1). Proteins associated with focal adhesions were increased in SPARC-null versus wild-type lens cells: levels of alpha6-integrin heterodimers, talin, and paxillin phosphorylated on tyrosine were enhanced significantly, as was the association of beta1-integrin with talin and paxillin. Restoration of the wild-type phenotype in SPARC-null cultures was accomplished through genetic rescue by stable transfection of SPARC cDNA. Our findings indicate that SPARC is counter-adhesive for murine lens epithelial cells and demonstrate that multiple factors contribute to this activity. We also identify SPARC as a modulator of LN-1 secretion and deposition by these cells, an activity important in epithelial cell-ECM interactions in the ocular lens.  相似文献   

16.
The eye lens is a useful tissue for studying phenomena related to aging since it can be separated into differentially aged or matured zones. This work establishes correlations between ubiquitin-lens protein conjugating capabilities and age, as well as the stage of maturation of bovine lens tissue. When exogenous 125I-ubiquitin was combined with supernatants of epithelial (least mature), cortex, and core (most mature) tissue, ATP-dependent conjugation of 125I-ubiquitin to lens proteins was most effective with the epithelial tissue preparation. Conjugate formation was greatest when lenses were obtained from young animals. Supernatants from cultured bovine lens epithelial (BLE) cells conjugated more 125I-ubiquitin to lens proteins than any tissue preparation. In all cases the predominant conjugates formed in these cell-free assays were of high molecular mass, although conjugates with masses in the 25-70 kDa range were also observed. Lens tissue and cultured BLE cell preparations were also probed with antibodies to ubiquitin to detect in vivo ubiquitin-lens protein conjugates. There was more free ubiquitin and ubiquitin conjugates in tissue from young as compared with older lenses. The greatest levels of conjugates were observed in cultured BLE cells. Specificity in the ubiquitination system is indicated since some of the conjugates formed in vivo appear identical to those formed in the cell-free assays and in reticulocytes using exogenous 125I-ubiquitin. Upon development and maturation of lens tissue (i.e., core as opposed to epithelium), there is accumulation of lower molecular mass conjugates.  相似文献   

17.
A water soluble growth inhibitor was isolated from the mammalian ocular iris-ciliary complex. The molecular weight of this protein is 10 kD or lower as determined by ultrafiltration fractionation. The iris-ciliary (IC) complex water soluble protein(s) significantly inhibits synthesis of lower molecular weight proteins of the epithelial cells of the organ cultured mammalian ocular lens. It was also found that this inhibitory effect of IC is mediated via the structural organization of the lens. Monolayer cultures of the lens epithelial cells exposed to IC did not manifest any inhibition of their protein synthesis. Moreover, these tissue cultured lens epithelial (TCLE) cells showed a significant increase in their protein synthetic activities in response to the presence of IC factors in the culture medium. It is postulated that the IC activity is modulated via either the lens capsule, an extracellular matrix, or due to the specific organization of the intact lens. The specific effects of IC on the cytoskeletal organization and synthesis in the organ cultured lens epithelial (OCLE) and TCLE cells were also examined. Both groups, treated with IC factors, manifested significant alterations in their protein synthetic activities and cytoskeletal architecture. The 3H-leucine incorporation experiments showed that alpha-actin and alpha-tubulin synthesis is partially inhibited by IC factors in OCLE cells but vimentin synthesis is not, whereas in TCLE cells all of them showed increased synthesis in response to IC factors. Turnover rates of these proteins in both OCLE and TCLE cells were also computed. The immunofluorescence and microscopic evaluation of OCLE and TCLE cells exposed to IC factors illustrated significant alteration in the cytoarchitecture of the filaments. We demonstrate that an inhibitor(s) molecule of 10 kD or lower size isolated from IC inhibited protein synthesis of OCLE cells and stimulated protein synthesis in TCLE cells. The IC factor also affects the synthesis and organization of cytoskeletal filaments of both the OCLE and TCLE cells.  相似文献   

18.
Summary One bovine mammary epithelial cell clone, designated PS-BME-C1, and two bovine mammary epithelial cell lines, designated PS-BME-L6 and PS-BME-L7, were derived from mammary tissue of a pregnant (270 day) Holstein cow. The cells exhibit the distinctive morphologic characteristics of mammary epithelial cells and express the milk fat globule membrane protein, PAS-III. They form domes when cultured on plastic substrata and acinilike aggregates when cultured on a collagen matrix. These cells are capable of synthesizing and secretingα-lactalbumin andα-s1-casein when cultured on a collagen matrix in the presence of insulin, cortisol, and prolactin. The cells have a near-normal diploid number and do not grow in suspension culture. When transplanted to the cleared mammary fat pads of female athymic nude mice, the cells readily proliferate forming noninvasive palpable spherical cellular masses within 8 wk after inoculation. The cells may become a useful tool to study the regulation of ruminant mammary epithelial cell growth and differentation. This work was supported by the Pennsylvania State University Experiment Station. The PS-BME cells are the property of The Pennsylvania Research Corporation. Scientists interested in obtaining the PS-BME clone or cell lines for their research may request them from the corresponding author.  相似文献   

19.
Comparative analysis of nuclear matrix proteins by two-dimensional electrophoresis may be greatly impaired by copurifying cytoskeletal proteins. The present data show that the bulk of adhering cytofilaments may mechanically be removed by shearing of nuclei pretreated with vanadyl ribonucleoside complexes. Potential mechanisms of action not based on ribonuclease inhibition are discussed. To individually preserve the integrity of nuclear structures, we developed protocols for the preparation of nuclear matrices from three categories of cells, namely leukocytes, cultured cells, and tissue cells. As exemplified with material from human lymphocytes, cultured amniotic cells, and liver tissue cells, the resulting patterns of nuclear matrix proteins appeared quite similar. Approximately 300 spots were shared among the cell types. Forty-nine of these were identified, 21 comprising heterogeneous nuclear ribonucleoproteins. Heterogeneous nuclear ribonucleoproteins L and nuclear lamin B2 isoforms were identified by amino acid sequencing and mass spectrometry. However, individually expressed proteins, such as the proliferating cell nuclear antigen, also pertained following application of the protocols. Thus, enhanced resolution and comparability of proteins improve systematic analyses of nuclear matrix proteins from various cellular sources. J. Cell. Biochem. 71:363–374, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号