首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously characterized two distinct pools of phosphatidylinositol (PI) in the WRK-1 rat mammary tumor cell, one whose metabolism is enhanced in response to vasopressin and another which is insensitive to hormonal manipulation. The purpose of the present study was to examine the relationship between cellular phosphatidylinositol 4,5-bisphosphate (PIP2) and each of the two PI pools. We have found that in WRK-1 cells, vasopressin induces the rapid loss of PIP2 and the accumulation of inositol phosphates. By making use of kinetic differences in 32Pi uptake into the two pools of PI and assessing radioactivity levels in the 1-phosphate of PIP2, we have determined that hormone-sensitive PI is the precursor of approximately 60% of the cellular PIP2; the remainder is synthesized from the hormone-insensitive pool. Additional data indicate that PIP2 derived from hormone-sensitive PI is likewise hormone-sensitive, while that synthesized from hormone-insensitive PI remains stable over a long period of time and is not affected by the presence of vasopressin.  相似文献   

2.
WRK-1, a cloned cell line derived from a rat mammary tumour, responds to physiological concentrations of vasopressin and pharmacological concentrations of oxytocin with increased incorporation of [14C]acetate into lipids and increased protein accumulation. The presence of pharmacological concentrations of insulin, which itself is active on the WRK-1 cells, further enhances the effects of the neurohypophysial hormones. Unlike the action of vasopressin on other responsive tissues, the stimulation of acetate incorporation by WRK-1 cells is not observed until 24 h after the addition of the hormone. The lipids synthesized in response to the hormones are predominantly polar lipids, rather than the triclyclycerold characteristic of the differentiated mammary gland. [1-Deaminocysteine, 8-D-arginine] vasopressin, a vasopressin analogue that lacks pressor activity, has no effect on WRK-1 cells.  相似文献   

3.
WRK-1 cells possess a labile, hormone-sensitive pool of phosphatidylinositol which appears to be separate from the stable, hormone-insensitive phosphatidylinositol. It is the sensitive pool which turns over in response to treatment with vasopressin. Addition of the calcium ionophore A23187, on the other hand, selectively stimulates precursor incorporation into the hormone-insensitive pool of phosphatidylinositol, while causing nonspecific breakdown of both pools. The polyphosphoinositides are similarly affected. Ionophore-stimulated breakdown appears to be predominantly phospholipase C-mediated, since there is a concomitant increase in inositol phosphates. These inositol phosphates are localized predominantly in the extracellular medium. Permeabilization of the cells may explain the extracellular location of the breakdown products. When added together with the hormone, A23187, at concentrations greater than 5 X 10(-6) M, inhibits both hormone-induced synthesis and breakdown of phosphatidylinositol. Omission of calcium from the medium abolishes the effects of the ionophore.  相似文献   

4.
Both vasopressin and bradykinin activate the phosphoinositide cycle in WRK-1 rat mammary tumour cells. When the two agonists are added simultaneously, partial additivity is observed with respect to disappearance of prelabelled phosphoinositides and accumulation of inositol phosphates; no additivity is observed with respect to resynthesis of phosphatidylinositol as assessed by monitoring [32P]Pi incorporation. Lack of complete additivity can be explained, at least in part, by heterologous desensitization. In order to determine whether the two agonists were accessing a common or individual hormone-sensitive phosphoinositide pools, cells were incubated with [32P]Pi in the presence of either vasopressin or bradykinin and subsequently restimulated with the alternative agonist. The lipid pool labelled in the presence of either agonist was sensitive to subsequent treatment by the other ligand, suggesting a common phosphoinositide pool. However, when cells were incubated with [32P]Pi in the absence of agonists, the time course of labelling of the hormone-sensitive pool was different for bradykinin and vasopressin, with that for bradykinin becoming labelled within a much shorter time. Thus although there is a significant overlap between the phosphoinositide pools responding to vasopressin and bradykinin, there is a small fraction of the hormone-sensitive lipid which responds only to bradykinin.  相似文献   

5.
Previous reports have suggested the existence of at least two pools of cellular myo-inositol (Ins); it has been further hypothesized that only one of these pools is utilized during hormone-activated, cyclic phosphatidylinositol (PtdIns) resynthesis. In an effort to investigate this possibility, we have undertaken kinetic studies of Ins metabolism in WRK-1 cells. Our results indicate that a single pool of Ins is involved in both basal and activated PtdIns synthesis. Ins generated by the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) mixes with the existing pool of free Ins and is not used exclusively for resynthesis of PtdIns. © 1995 Wiley-Liss, Inc.  相似文献   

6.
WRK-1 rat mammary tumor cells respond to vasopressin with an increase in the rate of phosphatidylinositol turnover. Evidence derived from a series of experiments performed under various prelabeling conditions suggests that the hormone-sensitive phosphatidylinositol resides in a distinct pool within the cell, accounting for approximately 17% (8-37%) of the total cellular phosphatidylinositol. The possibility that two distinct cell types might explain this finding is unlikely since neither newly cloned nor thymidine-blocked cells exhibit any alteration in the nature of their response. This hormone-sensitive phosphatidylinositol moiety has the following characteristics. 1) Under equilibrium labeling conditions, it is completely turned over within 5 min of hormone addition. 2) It is both synthesized and degraded even in the absence of hormone, although at a much slower rate. 3) Under the conditions employed, there does not appear to be transfer of phosphatidylinositol from the insensitive to the sensitive pool. A model of these events is outlined.  相似文献   

7.
Studies on a platelet-derived growth factor (PDGF) responsive osteosarcoma cell line, MG-63, were initiated to determine the effects of phosphatidylinositol (Ptdlns) 3-kinase inhibitors on serum-stimulated cell proliferation and PDGF-stimulated DNA replication, actin rearrangements, or Ptdlns 3-kinase activity. In a dose-dependent manner, the fungal metabolite wortmannin and a quercetin derivative, LY294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), inhibited serum-stimulated MG-63 cell proliferation. The mitogenic effects of PDGF on MG-63 cells, as determined by incorporation of [3H]-thymidine, were also substantially inhibited in the presence of 0.10 μM wortmannin or 10 μM LY294002. Furthermore, MG-63 cells stimulated by PDGF form distinct actin-rich, finger-like membrane projections which are completely inhibited by either 0.10 μM wortmannin or 10 μM LY294002. At these same concentrations, wortmannin and LY294002 were also effective at reducing levels of phosphatidylinositol 3-phosphate in PDGF-stimulated MG-63 cells. Treatment of these cells with increasing concentrations of wortmannin reduced the level of PDGF stimulated tyrosine phosphorylation of the PDGF receptor but did not significantly affect the amount of the Ptdlns 3-kinase regulatory subunit, p85, associated with the receptor. Additionally, pretreatment of cells with 0.250 μM wortmannin followed by stimulation with PDGF resulted in a slightly reduced level of receptor autokinase activity; however, similar treatment with 50 μM LY294002 did not affect the level of autokinase activity. These results demonstrate the effects of two different Ptdlns 3-kinase inhibitors on serum- and PDGF-stimulated MG-63 cell proliferation and PDGF-stimulated morphological changes and suggest a greater role for Ptdlns 3-kinase in these processes. J. Cell. Biochem. 64:182–195. © 1997 Wiley-Liss, Inc.  相似文献   

8.
An early manifestation of the response of WRK-1 rat mammary tumor cells to vasopressin is an increase in incorporation of (32P)Pi into phospholipids. Incorporation into all classes of phospholipids is stimulated; however, incorporation into phosphatidylinositol (PI) is increased to the greatest degree (3- to 10-fold as compared with 1.3- to 2-fold for the other phosholipids). Furthermore, increased incorporation into PI is accompanied by an increased rate of PI turnover; turnover rates of the other phospholipids are unaffected by vasopressin.  相似文献   

9.
WRK-1 rat mammary tumour cells respond to vasopressin with increased accumulation of inositol phosphates as well as increased precursor incorporation into phosphatidylinositol. The phorbol ester, phorbol 13-myristate 12-acetate (PMA) inhibits by 80% both inositol phosphate accumulation and increased precursor incorporation. This inhibition is much less evident at early times (2 min) than at later times (25 min). The vasopressin-induced rise in cytosolic free Ca2+ is inhibited in a similar manner. Oleoylacetylglycerol is inactive with respect to inhibition of vasopressin-induced increases in incorporation of 32P into phosphoinositides. PMA has no effect on vasopressin binding at saturating concentrations of the hormone and does not affect the binding affinity.  相似文献   

10.
Specific vasopressin binding to WRK-1 rat mammary tumor cells was assessed and compared with vasopressin-induced alterations in phosphatidylinositol metabolism. Scatchard analysis revealed the presence of two binding sites: a saturable, high affinity site with a dissociation constant of 1 X 10(-9) M and an n of 2700 sites per cell, and a nonsaturable, apparent lower affinity site. The higher affinity site appeared to have V1a specificity and to correlate with vasopressin's ability to stimulate phosphatidylinositol turnover in the cells.  相似文献   

11.
CHO/IRF960/T962 cells express a mutant human insulin receptor in which Tyr960 and Ser962 in the juxtamembrane region of the receptor's beta-subunit are replaced by Phe and Thr, respectively. The mutant insulin receptor undergoes autophosphorylation normally in response to insulin; however, insulin fails to stimulate thymidine incorporation into DNA, glycogen synthesis, and tyrosyl phosphorylation of an endogenous substrate pp185 in these cells. Another putative substrate of the insulin receptor tyrosine kinase is phosphatidylinositol 3-kinase (Ptdlns 3-kinase). We have previously shown that Ptdlns 3-kinase activity in Chinese hamster ovary cells expressing the wild-type human insulin receptor (CHO/IR) increases in both antiphosphotyrosine [anti-Tyr(P)] immunoprecipitates and intact cells in response to insulin. In the present study a new technique (detection of the 85-kDa subunit of Ptdlns 3-kinase using [32P]phosphorylated polyoma virus middle T-antigen as probe) is used to monitor the Ptdlns 3-kinase protein. The 85-kDa subunit of Ptdlns 3-kinase is precipitated by anti-Tyr(P) antibodies from insulin-stimulated CHO/IR cells, but markedly less protein is precipitated from CHO/IRF960/T962 cells. The amount of Ptdlns 3-kinase activity in the immunoprecipitates was also reduced in the CHO/IRF960/T962 cells compared to CHO/IR cells. In intact CHO/IRF960/T962 cells, insulin failed to stimulate phosphate incorporation into one of the products of activated Ptdlns 3-kinase, phosphatidylinositol-3,4-bisphosphate [Ptdlns(3,4)P2], whereas it caused a 12-fold increase in CHO/IR cells. In contrast, phosphate incorporation into another product, phosphatidylinositol trisphosphate [PtdlnsP3], was only partially depressed in the CHO/IRF960/T962 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
1. The effects on phosphatidylinositol metabolism of three Ca(2+)-mobilizing glycogenolytic hormones, namely angiotensin, vasopressin and adrenaline, have been investigated by using rat hepatocytes. 2. All three hormones stimulate both phosphatidylinositol breakdown and the labelling of this lipid with (32)P. 3. The response to angiotensin occurs quickly, requires a high concentration of the hormone and is prevented by [1-sarcosine, 8-isoleucine]angiotensin, a specific angiotensin antagonist that does not prevent the responses to vasopressin and to adrenaline. This response therefore seems to be mediated by angiotensin-specific receptors. 4. [1-Deaminocysteine,2-phenylalanine,7-(3,4-didehydroproline),8-arginine] vasopressin, a vasopressin analogue with enhanced antidiuretic potency, is relatively ineffective at stimulating phosphatidylinositol metabolism. This suggests that the hepatic vasopressin receptors that stimulate phosphatidylinositol breakdown are different in their ligand selectivity from the antidiuretic vasopressin receptors that activate renal adenylate cyclase. 5. Incubation of hepatocytes with ionophore A23187, a bivalent-cation ionophore, neither mimicked nor appreciably changed the effects of vasopressin on phosphatidylinositol metabolism, suggesting that phosphatidylinositol breakdown is not controlled by changes in the cytosol Ca(2+) concentration. This conclusion was supported by the observation that hormonal stimulation of phosphatidylinositol breakdown and resynthesis persists in cells incubated for a substantial period in EGTA, although this treatment somewhat decreased the phosphatidylinositol response of the hepatocyte. The phosphatidylinositol response of the hepatocyte therefore appears not to be controlled by changes in cytosol [Ca(2+)], despite the fact that this ion is thought to be the second messenger by which the same hormones control glycogenolysis. 6. These results may be an indication that phosphatidylinositol breakdown is an integral reaction in the stimulus-response coupling sequence(s) that link(s) activation of alpha-adrenergic, vasopressin and angiotensin receptors to mobilization of Ca(2+) in the rat hepatocyte.  相似文献   

13.
Abstract

Selective cytotoxicity of tumor cells induced by liposomal plant phosphatidylinositol (Ptdlns) has been studied. We could not always obtain cytotoxic plant Ptdlns liposomes in a series of experiments. Moreover, animal Ptdlns occasionally showed cytotoxicity towards tumor cells. By 1H nuclear magnetic resonance analysis of non-and cytotoxic Ptdlns, it has been suggested that oxidized acyl residues, such as hydroperoxide or dioxetan, may have been present in the cytotoxic Ptdlns. We have prepared epoxy-Ptdlns, as an analogous compound of the oxidized lipid, from noncytotoxic Ptdlns by chemical synthesis. the epoxy-PtdIns liposomes showed cytotoxicity towards tumor cells. In the presence of 100 µM epoxy-Ptdlns liposomes, normal human peripheral lymphocytes survived for 3 days, but Raji human lymphoblastoid-like cells were almost all killed. However, at higher concentrations, epoxy-PtdIns liposomes were also cytotoxic to normal cells.  相似文献   

14.
Rat hepatocytes rapidly incorporate [32P]Pi into phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; their monoester phosphate groups approach isotopic equilibrium with the cellular precursor pools within 1 h. Upon stimulation of these prelabelled cells with Ca2+-mobilizing stimuli (V1-vasopressin, angiotensin, alpha 1-adrenergic, ATP) there is a rapid fall in the labelling of PtdIns4P and PtdIns(4,5)P2. Pharmacological studies suggest that each of the four stimuli acts at a different population of receptors. Insulin, glucagon and prolactin do not provoke disappearance of labelled PtdIns4P and PtdIns(4,5)P2. The labelling of PtdIns4P and PtdIns(4,5)P2 in cells stimulated with vasopressin or angiotensin initially declines at a rate of 0.5-1.0% per s, reaches a minimum after 1-2 min and then returns towards the initial value. The dose-response curves for the vasopressin- and angiotensin-stimulated responses lie close to the respective receptor occupation curves, rather than at the lower hormone concentrations needed to evoke activation of glycogen phosphorylase. Disappearance of labelled PtdIns4P and PtdIns(4,5)P2 is not observed when cells are incubated with the ionophore A23187. The hormone-stimulated polyphosphoinositide disappearance is reduced, but not abolished, in Ca2+-depleted cells. These hormonal effects are not modified by 8-bromo cyclic GMP, cycloheximide or delta-hexachlorocyclohexane. The absolute rate of polyphosphoinositide breakdown in stimulated cells is similar to the rate previously reported for the disappearance of phosphatidylinositol [Kirk, Michell & Hems (1981) Biochem. J. 194, 155-165]. It seems likely that these changes in polyphosphoinositide labelling are caused by hormonal activation of the breakdown of PtdIns(4,5)P2 (and may be also PtdIns4P) by the action of a polyphosphoinositide phosphodiesterase. We therefore suggest that the initial response to hormones is breakdown of PtdIns(4,5)P2 (and PtdIns4P?), and that the simultaneous disappearance of phosphatidylinositol might be a result of its consumption for the continuing synthesis of polyphosphoinositides.  相似文献   

15.
In hepatocytes pre-labelled with [3H]glycerol, vasopressin increased by 20% the amount of radioactivity present in diacylglycerols. The effect of vasopressin was partially dependent on Ca2+. The magnitude of the increase in [3H]diacylglycerol was 5-times the sum of the radioactivity present in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. No stimulation by vasopressin of the initial rate of incorporation of radioactivity into diacylglycerols was observed in cells incubated in the presence of 10 mM [3H]glycerol. Treatment of hepatocytes labelled with either [3H]ethanolamine or [3H]choline with vasopressin, ionophore A23187 or phospholipase C increased the amount of radioactivity present in trichloroacetic acid extracts of the cells. The effect of vasopressin was dependent on extracellular Ca2+. It is concluded that in hepatocytes vasopressin increases diacylglycerols by a process which does not principally involve the conversion of phosphoinositides to diacylglycerol or the de novo synthesis of diacylglycerol from glycerol 3-phosphate, but does involve the Ca2+-dependent conversion of phosphatidylethanolamine and phosphatidylcholine to diacylglycerol.  相似文献   

16.
Chronic stimulation (24 h) with vasopressin leads to hypertrophy in H9c2 cardiomyoblasts and this is accompanied by continuous activation of phospholipase C. Consequently, vasopressin stimulation leads to a depletion of phosphatidylinositol levels. The substrate for phospholipase C is phosphatidylinositol (4, 5) bisphosphate (PIP2) and resynthesis of phosphatidylinositol and its subsequent phosphorylation maintains the supply of PIP2. The resynthesis of PI requires the conversion of phosphatidic acid to CDP-diacylglycerol catalysed by CDP-diacylglycerol synthase (CDS) enzymes. To examine whether the resynthesis of PI is regulated by vasopressin stimulation, we focussed on the CDS enzymes. Three CDS enzymes are present in mammalian cells: CDS1 and CDS2 are integral membrane proteins localised at the endoplasmic reticulum and TAMM41 is a peripheral protein localised in the mitochondria. Vasopressin selectively stimulates an increase CDS1 mRNA that is dependent on protein kinase C, and can be inhibited by the AP-1 inhibitor, T-5224. Vasopressin also stimulates an increase in cFos protein which is inhibited by a protein kinase C inhibitor. We conclude that vasopressin stimulates CDS1 mRNA through phospholipase C, protein kinase C and cFos and provides a potential mechanism for maintenance of phosphatidylinositol levels during long-term phospholipase C signalling.  相似文献   

17.
Previous studies have indicated the existence of two separate pools of phosphoinositides in WRK-1 cells; one is labile and hormone-sensitive with respect to turnover, while the other is stable. Hormonal stimulation results in a rapid increase in 32Pi incorporation into the sensitive pool, while in the absence of hormone, incorporation of 32Pi into this pool is slow. Results are quite different when [3H]inositol is the precursor utilized. Incorporation of [3H]inositol into hormone-sensitive phosphoinositides is not stimulated in the presence of hormone, suggesting entry of this exogenous precursor into the cycle by a route other than the resynthetic phase of the cycle. Furthermore, failure of hormone to induce loss of [3H]phosphoinositide in pulse-chase experiments in the absence of lithium suggests reutilization of the [3H]inositol moiety generated by phosphodiesteratic cleavage of hormone-sensitive phosphoinositide. Time course studies indicate that the relative rates of incorporation of [3H]inositol into sensitive and insensitive phosphoinositide remain constant from 2 to 24 h. Several factors are capable of increasing [3H]inositol incorporation into hormone-insensitive phosphoinositide including vasopressin, calcium ionophores, and manganese. On the other hand, vasopressin treatment appears to decrease incorporation of [3H]inositol into the hormone-sensitive pool, probably by shifting the equilibrium between phosphoinositides and inositol phosphates, since the decrease in radioactivity observed in the phosphoinositides is equaled by the increase observed in that in the inositol phosphates.  相似文献   

18.
To analyze the mechanism of action of the insulinomimetic agents H2O2, vanadate, and pervanadate (H2O2 and vanadate), CHO cells or CHO cells that overexpress wild-type or mutant insulin receptor and/or the insulin receptor substrate (IRS-1) were used. H2O2 or vanadate treatment alone had little or no effect on tyrosine phosphorylation of cellular proteins; however, pevanadate treatment dramatically enhanced tyrosine phosphorylation of a number of proteins including the insulin receptor and IRS-1. However, the insulin receptor and IRS-1 coimmunoprecipitate from insulin-treated but not from pervanadate-treated cells. Pervanadate-induced tyrosine phosphorylation of the insulin receptor led to an increase in insulin receptor tyrosine kinase activity toward IRS-1 in vivo and IRS-1 peptides in vitro equal to that induced by insulin treatment. Pervanadate-enhanced phosphorylation of IRS-1 led to a fifteenfold increase in IRS-1–associated phosphatidylinositol (Ptdlns) 3-kinase activity. However, insulin receptor–associated Ptdlns 3-kinase activity from pervanadate-treated cells was not detectable, while insulin receptor–associated Ptdlns 3-kinase activity from insulin-treated cells was 20% of the IRS-1-associated activity. Thus, pervanadate but not H2O2 or vanadate alone under these conditions mimics many of insulin actions, but pervanadate treatment does not induce insulin receptor/IRS-1 association.  相似文献   

19.
WRK 1 cells were labelled to equilibrium with 2-myo-[3H]inositol and stimulated with vasopressin. Within 3 s of hormone stimulation there was a marked accumulation of 3H-labelled InsP2 and InsP3 (inositol bis- and tris-phosphate), but not of InsP (inositol monophosphate). There was an associated, and rapid, depletion of 3H-labelled PtdInsP and PtdInsP2 (phosphatidylinositol mono- and bis-phosphates), but not of PtdIns (phosphatidylinositol), in these cells. Some 4% of the radioactivity in the total inositol lipid pool of WRK 1 cells was recovered in InsP2 and InsP3 after 10 s stimulation with the hormone. The selectivity of the vasopressin receptors of WRK 1 cells for a variety of vasopressin agonists and antagonists revealed these to be of the V1a subtype. There was no receptor reserve for vasopressin-stimulated inositol phosphate accumulation in WRK 1 cells. The accumulation of inositol phosphates was enhanced in the presence of Li+ions. Half-maximal accumulation of InsP, InsP2 and InsP3 in vasopressin-stimulated cells was observed with 0.9, 3.0 and 3.6 mM-Li+ respectively. Bradykinin and 5-hydroxytryptamine also provoked inositol phosphate accumulation in WRK 1 cells. The effects of sub-optimal concentrations of bradykinin and vasopressin upon inositol phosphate accumulation were additive, but those of optimal concentrations of the hormones were not.  相似文献   

20.
Methods have been developed to measure the lysophospholipid content and matrix volume of liver cell mitochondria in situ in order to test the hypothesis that these parameters may be important in the hormonal control of mitochondrial function [Armston, Halestrap & Scott (1982) Biochim. Biophys. Acta 681, 429-439]. No change in the labelling of mitochondrial lysophospholipids with [32P]Pi was detected after treatment of liver cells with glucagon, phenylephrine or vasopressin. Incorporation of [32P]Pi into mitochondrial phosphatidylinositol was enhanced by phenylephrine and vasopressin. Mitochondrial volumes were measured using rapid disruption of cells by sonication into 3H2O and [14C]sucrose or without cell disruption using 3H2O and [14C]mannitol. In control cells the two methods gave values of 1.09 and 0.40 microliters/mg of mitochondrial protein respectively, which represent 19 and 7% respectively of the total cell volume measured with 3H2O and inulin [14C]carboxylic acid. Both methods showed that glucagon, phenylephrine and 1 nm-valinomycin produced significant increases (13% and 26% using sucrose and mannitol respectively) in mitochondrial volume. The increase was coincident with the stimulation of gluconeogenesis from L-lactate and pyruvate and of mitochondrial respiratory chain activity. The effects of glucagon and phenylephrine were additive on both mitochondrial volume and respiratory chain activity, but not on gluconeogenesis. Liver cells exposed to gluconeogenic hormones or low concentrations of valinomycin showed a decrease in light scattering at 520 nM correlating with the change in mitochondrial volume but without a change in whole-cell volume. The time course and hormone sensitivity of this response were similar to those for the hormonal stimulation of gluconeogenesis. The light-scattering response to glucagon, phenylephrine and vasopressin, but not to valinomycin, were greatly reduced or abolished in Ca2+-free media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号