首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Human C-reactive protein (CRP) is an acute phase blood component that accumulates at sites of tissue damage and necrosis and is degraded by neutrophils to biologically active peptides. A dodecapeptide composed of amino acids 27–38 of CRP mediates cell attachment in vitro. This peptide was designated the cell-binding peptide (CB-Pep) of CRP. Characterization of the interaction between fibroblasts and modified synthetic peptides with sequential deletions from either the N-terminus or C-terminus revealed that the minimal sequence for cell attachment or inhibition of cell attachment to the CB-Pep was Phe-Thr-Val-Cys-Leu , which corresponds to residues 33–37 within each of the five 206 amino acid subunits of CRP. The pentapeptide by itself mediated cell attachment. Substitutions for each residue within the CB-Pep indicated that the critical residues for activity were Phe-33 and Thr-34. This cell-binding pentapeptide represents a recognition motif for cell adhesion not found in other proteins.  相似文献   

2.
C-reactive protein (CRP) is a major acute phase reactant in most mammalian species. CRP molecules from all species display Ca2(+)-dependent binding to phosphorylcholine (PC). The conserved PC-binding region of CRP corresponds to amino acids 51-66 within the human CRP sequence. A synthetic peptide composed of residues 47-63 of human CRP was previously shown to possess PC binding activity. The charged amino acids at positions 57, 58, 60, and 62 of this synthetic peptide were critical for PC-binding based on lower binding activity of synthetic peptides containing uncharged residues at these positions. The PC-binding peptide was used to generate mouse mAb that were tested for reactivity with intact CRP and with the TEPC-15 (T-15) mouse myeloma protein that also binds PC. The PC-binding peptide of CRP was recognized by two mAb specific for the T-15 Id. One of the mAb generated against the PC-binding peptide of CRP (IID6.2) recognized an epitope on the T-15 protein that was also recognized by the near-binding site-specific mAb (F6) to the T-15 PC-Id. Binding of IID6.2 to T-15 myeloma protein was not inhibited by PC and did not require Ca2+; however, binding was inhibited by the synthetic PC-binding peptide itself. Recognition of synthetic peptides containing uncharged amino acid substitutions by mAb F6 and IID6.2 was greatly reduced indicating that the shared epitope on T-15 and CRP was composed of similar charged residues. Therefore, CRP displays the same idiotope as an antibody that shares its specificity for the hapten, PC.  相似文献   

3.
Human C-reactive protein (CRP) is known to activate mouse macrophages (M phi) to a tumoricidal state and to serve as an opsonin for M phi. Therefore, cell surface receptors for CRP on mouse M phi were characterized and their relationship to the IgG FcR determined. The specific binding of 125I-CRP to resident or elicited mouse M phi was saturable, reversible, and involved both a high and a low affinity receptor population. Binding of CRP to the mouse M phi cell lines PU5 1.8 and J774 was nearly identical to that observed with peritoneal M phi. The high affinity receptor population had a calculated K of 10 nM and a receptor density of approximately 10(5) sites per cell. Mouse Ig of the IgG2a, IgG2b, or IgG1 isotypes inhibited binding of 125I-CRP to PU5 1.8 cells at concentrations five-fold greater than that of the homologous ligand. In the converse experiment, unlabeled CRP failed to inhibit specific binding of 125I-labeled IgG2a, IgG2b or IgG1. Isolation of CRP binding proteins from surface iodinated PU5 1.8 cells by ligand-affinity chromatography or chemical cross-linking yielded a major protein band of 57 to 60 kDa which appeared to be distinct from the IgG1/IgG2b FcR (FcR-II) membrane proteins. Removal of radiolabeled IgG2b/IgG1 binding membrane proteins by affinity chromatography did not remove CRP-binding proteins. The rat mAb 2.4G2 which inhibits binding of radiolabeled mouse IgG2b, did not inhibit the binding of CRP. A rat polyclonal antiserum to CRP-binding membrane proteins of PU5 1.8 cells inhibited 125I-CRP binding, but not 125IgG2b binding. The rat polyclonal antibody reacted with two 57 to 60 kDa membrane proteins from PU5 1.8 cells that appear to be of a similar size on Western blots. The 125I-CRP was internalized via endosomes and intact CRP subunits could be detected intracellularly. The findings suggest that binding of CRP occurs through a receptor that is distinct from the IgG FcRs, but that CRP-R activity may be influenced by an association with an IgG FcR.  相似文献   

4.
Abstract

The monoclonal antibody WF6 competes with acetylcholine and α-bungarotoxin (α-BGT) for binding to the Torpedo nicotinic acetylcholine receptor (nAChR) α1 subunit. Using synthetic peptides corresponding to the complete Torpedo nAChR α1 subunit, we previously mapped a continuous epitope recognized by WF6, and the prototope for α-BGT, to the sequence segment α1(181–200). Single amino acid substitution analogs have been used as an initial approach to determine the critical amino acids for WF6 and α-BGT binding. In the present study, we continue our analysis of the structural features of the WF6 epitope by comparing its cross-reactivity with synthetic peptides corresponding to the α1 subunits from the muscle nAChRs of different species, the rat brain α2, α3, α4 and α5 nAChR subtypes, and the chick brain α-BGT binding protein subunits, αBGTBP α1 and αBGTBP α2. Our results indicate that WF6 is able to cross-react with the muscle α1 subunits of different species by virtue of conservation of several critical amino acid residues between positions 190–198 of the α1 subunit. These studies further define the essential structural features of the sequence segment α1(181–200) required to form the epitope for WF6.  相似文献   

5.
Pseudomonas aeruginosa employs pili to mediate adherence to epithelial cell surfaces. The pilus adhesin of P. aeruginosa strains PAK and PAO has been shown to bind to the glycolipid asialo-GM1 (Lee et al., 1994 —accompanying article). PAK and PAO pili were examined for their abilities to bind to the synthetic βGalNAc(1–4)βGal (a minimal structural carbohydrate receptor sequence of asialo-GM1 and asialo-GM2 proposed by Krivan et al., 1988a) using solid-phase binding assays. Both pill specifically bound to βGalNAc(1–4)βGal. The binding of βGal-NAc(1–4)βGal-Biotin to the Immobilized PAK and PAO pili was inhibited by corresponding free pili. The receptor binding domain of the PAK pilus resides in the C-terminal disulphide-looped region (residues 128–144) of the pilin structural subunit (Irvin et al., 1989). Biotinylated synthetic peptides corresponding the C-terminal residues 128–144 of P. aeruginosa PAK and PAO pilin molecules were shown to bind to the βGalNAc(1–4)βGal-(bovine serum albumin (BSA)). The binding of biotinylated peptides to βGalNAc-(1–4)βGal-BSA was inhibited by PAK pili, Ac-KCTSDQDEOFIPKGCSK-OH (AcPAK(128–144)ox-OH) and Ac-ACKSTQDPMFTPKGCDN-OH (AcPAO(128–144)ox-OH) peptides. (In these peptides Ac denotes Nα -acetylation of the N-terminus, -OH means a peptide with a free a-carboxyl group at the C-terminus and the‘ox’denotes the oxidation of the sulphhydryl groups of Cys–129 and Cys–142.) Both acetylated peptides were also able to inhibit the binding of βGalNAc(1–4)βGal-biotin to the corresponding BSA-Peptide(128–144)ox-OH conjugates. The βGlcNAc(1–3)βGal(1–4)βGlc-biotin conjugate was unable to specifically bind to either Immobilized PAK and PAO pili or the respective C-termlnal peptides. The data above demonstrated that the P. aeruginosa pili recognize asialo-GM1 receptor analogue and that βGalNAc(1–4)βGal disaccharlde is sufficient for binding. Furthermore, the binding to βGalNAc(1–4)βGal was mediated by residues 128–144 of the pilin subunit.  相似文献   

6.
Abstract

In Myasthenia Gravis most anti-acetylcholine receptor (AChR) antibodies are against a highly conserved area of the AChR α-subunit called the Main Immunogenic Region (MIR). Amino acid residues critical for MIR formation have been located within the sequence α67–76. In the present study, binding of anti-AChR monoclonal antibodies (mAbs) to synthetic peptide analogues of the sequence α67–76 of human and Torpedo AChRs containing conservative single-residue substitutions identified the amino acid residues most important to the antigenicity of the MIR sequence, and offered clues to its tridimensional structure.

Conservative substitutions of residues Asn68 and Asp71 greatly diminished mAb binding, identifying them as critical contact residues for anti-MIR mAbs. Substitutions at Asp70 and Tyr72 moderately affected binding. Cross-reactive mAbs originally raised against Electrophorus AChR bound single residue-substituted synthetic peptides in a manner consistent with the possibility that Electrophorus AChR may have a glutamic acid residue at position α70 or α71. Substitutions at residues Asp/Ala70 and Val/Ile70 between human and Torpedo α-subunits may be size-compensating, suggesting these amino acids in the native AChR may be in closer proximity than proposed in previous models of the MIR.  相似文献   

7.
A mixed phage library containing random peptides from four to eight residues in length flanked by cysteine residues was screened using a recombinant soluble, form of human ICAM-1, which included residues 1–453, (ICAM-11–453). Phage bound to immobilized ICAM-11–453 were eluted by three methods: (1) soluble ICAM-11–453, (2) neutralizing murine monoclonal antibody, (anti-ICAM-1, M174F5B7), (3) acidic conditions. After three rounds of binding and elution, a single, unique ICAM-1 binding phage bearing the peptide EWCEYLGGYLRYCA was isolated; the identical phage was selected with each method of elution. Attempts to isolate phage from non-constrained (i.e., not containing cysteines) libraries did not yield a phage that bound to ICAM-1. Phage displaying EWCEYLGGYLRCYA bound to immobilized ICAM-11–453 and to ICAM-11–185, a recombinant ICAM-1, which contains only the two amino-terminal immunoglobulin domains residing within residues 1–185. This is the region of the ICAM-1 that is bound by LFA-1. The phage did not bind to proteins other than ICAM-1. The phage bound to two ICAM-1 mutants, which contained amino acid substitutions that dramatically decreased or eliminated the binding to LFA-1. Studies were also performed with the corresponding synthetic peptide. The linear form of the synthetic EWCEYLGGYLRCYA peptide was found to inhibit LFA-1 binding to immobilized ICAM-11–453 in a protein-protein binding assay. By contrast, the disulfide, cyclized, form of the peptide was inactive. The EWCEYL portion of the sequence is homologous to the EWPEYL sequence found within rhinovirus coat protein 14, a nonintegrin protein that binds to ICAM-1. Taken together, the results suggests that the EWCEYLGGYLRCYA sequence is capable to binding to immobilized ICAM-1. Phage display appears to represent a new approach for the identification of peptides that interfere with ICAM-1 binding to β2 integrins. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The binding of 125I-labeled rabies virus to a synthetic peptide comprising residues 173-204 of the alpha 1-subunit of the nicotinic acetylcholine receptor was investigated. Binding of rabies virus to the receptor peptide was dependent on pH, could be competed with by unlabeled homologous virus particles, and was saturable. Synthetic peptides of snake venom, curaremimetic neurotoxins and of the structurally similar segment of the rabies virus glycoprotein, were effective in competing with labeled virus binding to the receptor peptide at micromolar concentrations. Similarly, synthetic peptides of the binding domain on the acetylcholine receptor competed for binding. These findings suggest that both rabies virus and neurotoxins bind to residues 173-204 of the alpha 1-subunit of the acetylcholine receptor. Competition studies with shorter alpha-subunit peptides within this region indicate that the highest affinity virus binding determinants are located within residues 179-192. A rat nerve alpha 3-subunit peptide, that does not bind alpha-bungarotoxin, inhibited binding of virus to the alpha 1 peptide, suggesting that rabies binds to neuronal nicotinic acetylcholine receptors. These studies indicate that synthetic peptides of the glycoprotein binding domain and of the receptor binding domain may represent useful antiviral agents by targeting the recognition event between the viral attachment protein and the host cell receptor, and inhibiting attachment of virus to the receptor.  相似文献   

9.
The multiphosphorylated tryptic peptide αs1‐casein(59–79) has been shown to be antigenic with anti‐casein antibodies. In an approach to determine the amino acyl residues critical for antibody binding we undertook an epitope analysis of the peptide using overlapping synthetic peptides. With αs1‐casein(59–79) as the adsorbed antigen in a competitive ELISA only two of five overlapping synthetic peptides at 1 mM significantly inhibited binding of the anti‐casein antibodies. Peptides Glu‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu and Ile‐Val‐Pro‐Asn‐Ser(P)‐Val‐Glu‐Glu inhibited antibody binding by 20.0±3.6% and 60.3±7.9%, respectively. The epitope of Glu63‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu70 was further localised to the phosphoseryl cluster as the peptide Ser(P)‐Ser(P)‐Ser(P) significantly inhibited binding of the anti‐casein antibodies to αs1‐casein(59–79) by 29.5±7.4%. Substitution of Ser(P)75 with Ser75 in the second inhibitory peptide Ile‐Val‐Pro‐Asn‐Ser(P)75‐Val‐Glu‐Glu also abolished inhibition of antibody binding to αs1‐casein (59–79) demonstrating that Ser(P)75 is also a critical residue for recognition by the antibodies. These data show that the phosphorylated residues in the cluster sequence ‐Ser(P)66‐Ser(P)‐Ser(P)68 and in the sequence ‐Pro73‐Asn‐Ser(P)‐Val‐Glu77‐ are critical for antibody binding to αs1‐casein(59–79) and further demonstrate that a highly phosphorylated segment of a protein can be antigenic. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The serum acute phase reactant, C-reactive protein (CRP), is selectively deposited at sites of tissue damage and degraded by neutrophils into biologically active peptides. A synthetic peptide corresponding to residues 27-38 present in each of the five identical subunits of CRP mediated cell attachment activity in vitro. Although the CRP-derived peptide contains a Tuftsin (TKPR)-like sequence at its amino-terminus, the Tuftsin tetrapeptide itself, as well as several synthetic peptides of CRP, failed to inhibit the cell-attachment activity to the CRP-derived peptide. Peptides containing the sequences responsible for the cell attachment activity of the extracellular matrix proteins, fibronectin (Fn) and laminin, failed to inhibit the CRP-derived peptide cell attachment activity. However, the addition of the RGDS and RGDSPASSLP cell-binding peptides of Fn to cells enhanced attachment to the active peptide from CRP. In the converse experiment, the cell-binding peptide of CRP did not influence cell attachment to Fn or laminin. A peptide corresponding to the same stretch of amino acid residues within the homologous Pentraxin, serum amyloid P-component (SAP), displayed nearly identical cell-attachment activity. Several monoclonal antibodies (mAb) specific for the CRP-derived cell-binding peptide neutralized its cell-attachment activity. These mAbs reacted with intact CRP and neutralized the cell-binding activity of CRP itself. The findings suggest that a peptide with cell-binding activity could be generated from the breakdown of CRP and then contribute directly to cellular events leading to tissue repair.  相似文献   

11.
Human C-reactive protein (CRP) is an acute phase reactant that is opsonic and an activator of macrophage tumoricidal function. CRP also activates the classical C cascade. These activities suggest that CRP might interact with monocytes/macrophages via specific receptors in a manner analogous to the interaction of IgG with FcR. With the use of radio-labeled human CRP, we have observed specific binding of CRP to human blood monocytes and the human monocytic cell line U-937. Binding was saturable at a pathophysiologic concentration of CRP, with an estimated KD of 9.5 x 10(-8) M and 3.6 x 10(5) binding sites/cell. Specific binding was inhibited by polyclonal human IgG as well as an IgG1 myeloma. In the converse experiment, CRP failed to inhibit specific [125I]IgG binding. The mAb IV.3, which inhibits binding of IgG immune complexes to FcRII, did not inhibit CRP binding. A 100-fold excess of phosphorylcholine or the phosphorylcholine binding peptide of CRP (residues 47-63) failed to inhibit binding. Although human rIFN-gamma and PMA increased FcRI expression, these reagents had no affect on CRP receptor expression. A single membrane protein of 38 to 41 kDa from U-937 cells was chemically cross-linked to [125I]CRP; the cross-linking was inhibited by human IgG1 but not the IV.3 mAb. Furthermore, two membrane proteins with a Mr of 38 to 40 kDa and 58 to 60 kDa were isolated by CRP ligand-affinity chromatography. These proteins were of a distinct size from those isolated for FcRI from an IgG ligand matrix. These studies demonstrate specific binding of human CRP to a human monocytic cell line via receptors that are distinct from the IgG FcR and implicate CRP in nonspecific, preimmune host defense reaction mediated by cells of the monocytic lineage.  相似文献   

12.
The human follicle-stimulating hormone (hFSH) belongs to a family of glycoprotein hormones which contains two non-identical subunits. This paper describes the design and synthesis of a series of synthetic hFSH constructs as putative ligands for the receptor. The design of these constructs is based on the crystal structure of hCG and molecular modelling using the program package Insight II/Discover. The designed constructs contain peptides ranging from 7 to 48 amino acid residues, disulphide bridges and glycan residues. All the synthetic peptides were synthesized by the stepwise solid-phase method using Fmoc chemistry. Two of the synthetic peptides contain the glycosylated amino acid, Asn(GlcNAc-GlcNAc) and both were prepared using fully protected glycosylated building blocks in the solid-phase peptide synthesis. The disulphide bridges were formed from acetamidomethyl-protected glycopeptides and peptides by a direct deprotection/oxidation method using thallium(III) trifluoroacetate. Mass spectroscopy and amino acid analysis were used for characterization of the synthetic hFSH glycopeptides and peptides. The synthetic hFSH constructs were tested for binding activity on FSH receptor assays but none showed improved binding properties compared with the naturally occurring hormone. It was finally demonstrated that non-related peptides showed non-specific binding at the same level as reported for specific peptides. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Zhang G  Guo J  Zhou J  Wang X  Li Q  Yang Y  Shen H  Zhao D  Zhang H  Xi J  Wang L  Qiao S  Jin X 《FEBS letters》2006,580(5):1383-1390
To identify the linear epitope for Fc-binding on the bovine IgG2 Fc receptor (boFcgamma2R), peptides derived from the membrane-distal extracellular domain (EC1) of boFcgamma2R corresponding to the homologous region of human FcalphaRI were synthesized. Binding of bovine IgG2 to the different peptides was tested by Dot-blot assay, and the peptide showing maximal binding was further modified by truncation and mutation. The minimum effective peptide 82FIGV85 located in the putative F-G loop of the EC1 domain was found to bind bovine IgG2 specifically and inhibit the binding of bovine IgG2 to the receptor. The Phe82, Ile83 and Val85 residues within the linear epitope were shown to be critical for IgG2-binding. Such functional epitope peptide should be very useful for understanding the IgG-Fcgamma interaction and development of FcR-targeting drugs.  相似文献   

14.
To date three β subunits of the GABAA receptor have been identified in rat brain as a result of cDNA library screening. The β2 subunit has been reported to have a wide distribution in rat brain based on in situ hybridization studies quantifying β2 mRNA. To study the β2 subunit more directly, we have raised a polyclonal antibody to a synthetic peptide representing residues 315–334 of the intracellular loop of the β2 subunit. The antibody, which had been affinity-purified, recognized the β2 peptide but did not immunolabel homologous β1 and β3 subunit peptides, indicating that this antibody is specific for the β2 subunit of the receptor. In western blots of the purified receptor, the antibody recognized a major diffuse band of 54–58 kDa arid exhibited minor labeling of lower-molecular-mass polypeptides. In western blots of cortex homogenate, the antibody exhibited nervous system-specific labeling of a 55-kDa band that comigrated with the 55-kDa band of the purified receptor. Quantitative immunolabeling of this 55-kDa polypeptide permitted direct determination of the relative amounts of the β2 subunit in different brain regions. The brainstem contained the highest relative specific activity of the β2 subunit, followed by the inferior colliculus, olfactory lobe, and cerebellum. Lower levels of immunolabeling were seen in hypothalamus, hippocampus, thalamus, and cortex.  相似文献   

15.
Peptide T-11, a carboxyl terminal tryptic fragment of α2-plasmin inhibitor, inhibits the reversible first step of the reaction between plasmin and α2-plasmin inhibitor. To elucidate which amino-acid residues played a important role in the inhibitory activity of peptide T-11, we prepared the various synthetic derivatives of peptide T-11 and determined the peptide concentration that inhibited the apparent rate constant of the reaction between plasmin and α2-plasmin inhibitor by 50% (IC50). Peptide III, which lacked the residues Gly-1 to Pro-7 of peptide I (peptide T-11), had a strong inhibitory activity, like peptide I (IC50: peptide 1, 7 μM; peptide III, 13 μM). The peptides that lacked the Leu-9 and Lys-10 or Lys-26 of peptide III showed much weaker activity, and the loss of amidation of the C-terminal lysine of peptide III also markedly reduced the inhibitory activity, Peptide III competitivef inhibited the binding of [14C]tranexamic acid to kringle 1 + 2 + 3 (K1–3) and kringle 4 (K4) in a binding assay performed by the gel-diffusion method. The respectively dissociation constants (Kd) of peptide III for K1–3 and K4 were 0.85 μM and 35.2 μM. These data suggest that the amino residue of Lys-10 and the carboxylic acid of Lys-26 in peptide T-11 play crucial roles in the ionic binding of α2-plasmin inhibitor to the tranexamic acid-binding site (lysine-binding site) of plasminogen. Peptide T-11: H-G-D-K-L-F-G-P-D-L-K-L-V-P-P-M-E-E-D-Y-P-Q-F-G-S-P-K-OH.  相似文献   

16.
Monoclonal antibodies to the main immunogenic region of the nicotinic acetylcholine receptor have been studied with regard to their binding to synthetic peptides. It was found that monoclonal antibody 210 to the main immunogenic region binds to the synthetic fragment spanning residues 66 to 76 of the alpha subunits of the acetylcholine receptor from human muscle, but not to the homologous sequence from Xenopus. This parallels the reactivities of antibodies to the main immunogenic region with intact receptors from two species, and confirms the biological significance of the weak interactions observed between antibodies to this region and synthetic peptides. It also suggests that N alpha 68 and D alpha 71 are critical contact residues.  相似文献   

17.
Synthetic peptides corresponding to 57% of the sequence of alpha subunits of acetylcholine receptors from Torpedo californica electric organ and extending from the NH2 to the COOCH terminus have been synthesized. The alpha-bungarotoxin binding site on denatured alpha subunits was mapped within the sequence alpha 185-199 by assaying binding of 125I-alpha-bungarotoxin to slot blots of synthetic peptides. Further studies showed that residues in the sequence alpha 190-194, especially cysteines-alpha 192, 193, were critical for binding alpha-bungarotoxin. Reduction and alkylation studies suggested that these cysteines must be disulfide linked for alpha-bungarotoxin to bind. Binding sites for serum antibodies to native receptors or alpha subunits were mapped by indirect immunoprecipitation of 125I-peptides. Several antigenic sequences were identified, but a synthetic peptide corresponding to the main immunogenic region (which is highly conformation dependent) was not identified.  相似文献   

18.
Polyclonal antibodies were raised by the repeated injection of rabbits with synthetic peptides corresponding to selective portions (peptide 1: aminoacid residues 12–23, and peptide 2: aminoacid residues 243–268) of the aminoacid sequence of the rat 5-HT1A receptor. Both antisera allowed the immunoprecipitation of 5-HT1A receptors but not of other 5-HT receptor types and adrenergic receptors solubilized from rat hippocampal membranes. Immunoblots demonstrated that a single protein of 63 kDa, corresponding to the molecular weight of the rat 5-HT1A receptor binding subunit, was recognized by each antiserum. Immunoautoradiographic labelling of rat brain sections with the anti-peptide 2-antiserum exhibited the same regional distribution as 5-HT1A sites labelled by selective radioligands such as [3H]8-OH-DPAT and [125I]BH-8-MeO-N-PAT. However regional differences apparently existed between the respective intensity of labelling by the agonist radioligands and the antiserum, which might be explained by variations in the degree of coupling of 5-HT1A receptor binding subunits with G proteins from one brain area to another.  相似文献   

19.
We prepared 125I-labeled cholera toxin B subunit (125I-labeled CT-B, specific activity 98 Ci/mmol) and found that its binding to rat IEC-6 intestinal epithelial cells was high-affinity (Kd 1.9 nM). The binding of labeled protein was completely inhibited by unlabeled thymosin-α1 (TM-α1), interferon-α2 (IFN-α2), and synthetic peptide LKEKK, which corresponds to residues 16–20 in TM-α1 and 131–135 in IFN-α2 (Ki 1.2, 0.9, and 1.6 nM, respectively), but was not inhibited by synthetic peptide KKEKL with inverted amino acid sequence (Ki > 10 μM). Thus, TM-α1, IFN-α2, and the LKEKK peptide bind with high affinity and specificity to CT-B receptor on rIEC-6 cells. It was found that CT-B and the LKEKK peptide at concentrations of 10–1000 nM increased nitric oxide production and soluble guanylate cyclase activity in the cells in a dose-dependent manner.  相似文献   

20.
A set of 18 synthetic uniform overlapping peptides spanning the entire extracellular part (residues 1–210) of the α-subunit of human acetylcholine receptor were studied for their binding activity of125I-labeled α-bungarotoxin and cobratoxin. A major toxin-binding region was found to reside within peptide α122–138. In addition, low-binding activities were obtained with peptides α34–49 and α194–210. It is concluded that the region within residues α122–138 constitutes a universal major toxin-binding region for acetylcholine receptor of various species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号