首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The ventral nerve cord of arthropods is characterised by the organisation of major axon tracts in a ladder-like pattern. The individual neuromeres are connected by longitudinal connectives whereas the contra-lateral connections are brought about through segmental commissures. In each neuromere of the embryonic central nervous system (CNS) of Drosophila an anterior and a posterior commissure is found. The development of these commissures requires a set of neurone-glia interactions at the midline. Here we show that both the anterior as well as the posterior commissures are subdivided into three axon-containing regions. Electron microscopy of the ventral nerve cord of mutations affecting CNS midline cells indicates that the midline glial cells are required for this subdivision. In addition the midline glial cells appear required for a crossing of commissural growth cones perpendicular to the longitudinal tracts, since in mutants with defective midline glial cells commissural axons frequently cross the midline at aberrant angles. Received: 6 July 1997 / Accepted: 27 August 1997  相似文献   

2.
Three major axon pathways cross the midline of the vertebrate forebrain early in embryonic development: the postoptic commissure (POC), the anterior commissure (AC) and the optic nerve. We show that a small population of Gfap+ astroglia spans the midline of the zebrafish forebrain in the position of, and prior to, commissural and retinal axon crossing. These glial ;bridges' form in regions devoid of the guidance molecules slit2 and slit3, although a subset of these glial cells express slit1a. We show that Hh signaling is required for commissure formation, glial bridge formation, and the restricted expression of the guidance molecules slit1a, slit2, slit3 and sema3d, but that Hh does not appear to play a direct role in commissural and retinal axon guidance. Reducing Slit2 and/or Slit3 function expanded the glial bridges and caused defasciculation of the POC, consistent with a ;channeling' role for these repellent molecules. By contrast, reducing Slit1a function led to reduced midline axon crossing, suggesting a distinct role for Slit1a in midline axon guidance. Blocking Slit2 and Slit3, but not Slit1a, function in the Hh pathway mutant yot (gli2DR) dramatically rescued POC axon crossing and glial bridge formation at the midline, indicating that expanded Slit2 and Slit3 repellent function is largely responsible for the lack of midline crossing in these mutants. This analysis shows that Hh signaling helps to pattern the expression of Slit guidance molecules that then help to regulate glial cell position and axon guidance across the midline of the forebrain.  相似文献   

3.
The anterior commissure forms the first axon connections between the two sides of the embryonic telencephalon. We investigated the role of the transmembrane receptor Frizzled-3a in the development of this commissure using zebrafish as an experimental model. Knock down of Frizzled-3a resulted in complete loss of the anterior commissure. This defect was accompanied by a loss of the glial bridge, expansion of the slit2 expression domain and perturbation of the midline telencephalic-diencephalic boundary. Blocking Slit2 activity following knock down of Frizzled-3a effectively rescued the anterior commissure defect which suggested that Frizzled-3a was indirectly controlling the growth of axons across the rostral midline. We have shown here that Frizzled-3a is essential for normal development of the commissural plate and that loss-of-function causes Slit2-dependent defects in axon midline crossing in the embryonic vertebrate forebrain. These data supports a model whereby Wnt signaling through Frizzled-3a attenuates expression of Slit2 in the rostral midline of the forebrain. The absence of Slit2 facilitates the formation of a midline bridge of glial cells which is used as a substrate for commissural axons. In the absence of this platform of glia, commissural axons fail to cross the rostral midline of the forebrain.  相似文献   

4.
The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in particular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.  相似文献   

5.
We have studied a group of midline cells in the embryonic brain of the grasshopper by using immunocytochemical and intracellular dye injection techniques. This cluster of midline cells differentiates between the pars intercerebralis lobes of the protocerebrum during early embryogenesis, and is composed of putative midline progenitors as well as neuronal and glial cells. Annulin immunoreactive glial processes surround the borders of the midline cell cluster and also form a network of processes extending from there to the borders of proliferative clusters in the brain hemispheres. Among the cells that derive from the midline cluster are two bilaterally symmetrical pairs of identified primary commissure pioneer neurons. By navigating along the glial bound borders of the midline proliferative cluster, the axons of these pioneers establish an initial axonal bridge across the brain midline. This analysis identifies a glial-bound midline proliferative cluster in the brain and shows that neuronal and glial cells of this cluster are closely associated with neurons pioneering the primary brain commissure. Comparable features of midline cells in the ventral ganglia and similarities to other proliferative clusters in the brain hemispheres are discussed.  相似文献   

6.
The arthropod head is a complex metameric structure. In insects, orthodenticle (otd) functions as a ‘head gap gene’ and plays a significant role in patterning and development of the anterior head ectoderm, the protocerebrum, and the ventral midline. In this study, we characterize the structure and developmental deployment of two otd paralogs in the amphipod crustacean, Parhyale hawaiensis. Photd1 is initially expressed at gastrulation through germband stages in a bilaterally symmetric, restricted region of the anterior head ectoderm and also in a single column of cells along the ventral midline. Late in embryogenesis, Photd1 is expressed within the developing anterior brain and the expression along the embryonic midline has become restricted to a stereotypic group of segmentally reiterated cells. The second ortholog Photd2, however, has a unique temporal–spatial expression pattern and is not detected until after the head lobes have been organized in the developing ectoderm of the germband during late germband stages. Anteriorly, Photd2 is coincident with the Photd1 head expression domain; however, Photd2 is not detected along the ventral midline during formation of the germband and only appears in the ventral midline late in embryonic development in a restricted group of cells distinct from those expressing Photd1. The early expression of Photd1 in the anterior head ectoderm is consistent with a role as a head gap gene. The more posterior expression of Photd1 is suggestive of a role in patterning the embryonic ventral midline. Photd2 expression appears too late to play a role in early head patterning but may contribute to latter patterning in restricted regions of both the head and the ventral midline. The comparative analysis of otd reveals the divergence of gene expression and gene function associated with duplication of this important developmental gene.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

7.
Acoel worms are simple, often microscopic animals with direct development, a multiciliated epidermis, a statocyst, and a digestive parenchyma instead of a gut epithelium. Morphological characters of acoels have been notoriously difficult to interpret due to their relative scarcity. The nervous system is one of the most accessible and widely used comparative features in acoels, which have a so‐called commissural brain without capsule and several major longitudinal neurite bundles. Here, we use the selective binding properties of a neuropeptide antibody raised in echinoderms (SALMFamide2, or S2), and a commercial antibody against serotonin (5‐HT) to provide additional characters of the acoel nervous system. We have prepared whole‐mount immunofluorescent stainings of three acoel species: Symsagittifera psammophila (Convolutidae), Aphanostoma pisae, and the model acoel Isodiametra pulchra (both Isodiametridae). The commissural brain of all three acoels is delimited anteriorly by the ventral anterior commissure, and posteriorly by the dorsal posterior commissure. The dorsal anterior commissure is situated between the ventral anterior commissure and the dorsal posterior commissure, while the statocyst lies between dorsal anterior and dorsal posterior commissure. S2 and serotonin do not co‐localise, and they follow similar patterns to each other within an animal. In particular, S2, but not 5‐HT, stains a prominent commissure posterior to the main (dorsal) posterior commissure. We have for the first time observed a closed posterior loop of the main neurite bundles in S. psammophila for both the amidergic and the serotonergic nervous system. In I. pulchra, the lateral neurite bundles also form a posterior loop in our serotonergic nervous system stainings.  相似文献   

8.
The preoptic area/anterior hypothalamus (POA/AH) sits as a boundary region rostral to the classical diencephalic hypothalamus and ventral to the telencephalic septal region. Numerous studies have pointed to the region's importance for sex‐dependent functions. Previous studies suggested that migratory guidance cues within this region might be particularly unique in their diversity. To better understand the early development and differentiation of the POA/AH, cytoarchitectural, birthdate, immunocytochemical, and cell migration studies were conducted in vivo and in vitro using embryonic C57BL/6J mice. A medial preoptic nucleus became discernible using Nissl stain in males and females between embryonic days (E) E15 and E17. Cells containing immunoreactive estrogen receptor‐α were detected in the POA/AH by E13, and increased in number with age in both sexes. From E15 to E17, examination of the radial glial fiber pattern by immunocytochemistry confirmed the presence of dual orientations for migratory guidance ventral to the anterior commissure (medial‐lateral and dorsal‐ventral) and uniform orientation more caudally (medial‐lateral). Video microscopy studies followed the migration of DiI‐labeled cells in coronal 250‐μm brain slices from E15 mice maintained in serum‐free media for 1–3 days. Analyses showed significant migration along a dorsal‐ventral orientation in addition to medial‐lateral. The video analyses showed significantly more medial‐lateral migration in males than females in the caudal POA/AH. In vivo, changes in the distribution of cells labeled by the mitotic indicator bromodeoxyuridine (BrdU) suggested their progressive migration through the POA/AH. BrdU analyses also indicated significant movement from dorsal to ventral regions ventral to the anterior commissure. The significant dorsal‐ventral migration of cells in the POA/AH provides additional support for the notion that the region integrates developmental information from both telencephalic and diencephalic compartments. The sex difference in the orientation of migration of cells in the caudal POA/AH suggests one locus for the influence of gonadal steroids in the embryonic mouse forebrain. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 252–266, 1999  相似文献   

9.
A long-standing hypothesis posits that morphological changes may be more likely to result from changes in regulation of gene expression than from changes in the protein coding sequences of genes. We have compared the expression pattern of the twisted gastrulation (tsg) gene among five Drosophila species: D. melanogaster, D. simulans, D. subobscura, D. mojavensis, and D. virilis. The tsg gene encodes a secreted protein that is required for the specification of dorsal midline fates in the Drosophila early embryo. TSG is unlike other secreted growth and differentiation factors in Drosophila in that its expression pattern can be experimentally varied and still result in normal development. Because of this, its regulatory region may be freer to diverge than that of other developmental genes whose misexpression may lead to lethal defects. Thus, the tsg gene may be a good indicator of the frequency and nature of evolutionary changes affecting patterns of gene expression. Over ∼60 million years (Myr), the tsg gene has retained a dorsal-on/ventral-off pattern and a middorsal region of expression; but there have been marked changes in the middorsal domain of expression as well as the appearance/loss of other domains of expression along the anterior/posterior axis. Changes between closely related species (∼2–5 Myr since divergence) that are not reflected among more distantly related species suggest frequent changes in gene expression over evolutionary time. These changes in gene expression may serve as the raw material for eventual evolutionary changes in morphology. Received: 24 March 1997 / Accepted: 20 June 1997  相似文献   

10.
Abstract The structure of the anterior end of three ontogenetically successive stages of Nectonema munidae (Nematomorpha) is investigated by light and transmission electron microscopy. During development, an adult cuticle is formed under a larval cuticle, which is subsequently moulted. Only one moult can be documented for Nectonema. The brain has a main subpharyngeal portion and a weak suprapharyngeal commissure. It is circumpharyngeal only in early developmental stages, the dorsal commissure is reduced in the adult stage. Four giant cells and a cerebral cavity are adult features. Although the morphology of the giant cells is elucidated, their function remains unclear, but a sensory function is probable. A septum marks the posterior border of the anterior end and divides a cerebral cavity from a body cavity. A precursor of the septum is present in the first stage observed, but it lies next to the epidermis and does not separate a cerebral cavity. Cuticular structures in the pre-pharyngeal region of the early stages are interpreted as remnants of the larval boring organ. They are moulted together with the larval cuticle. The morphology of the pharynx and the anterior part of the intestine is shown.  相似文献   

11.
SYNOPSIS. Trophozoites and what appear to be early spore forms of a parasitic protozoan present in the spinal cord of the lungfish Polypterus enlicheri are described. They are probably intra- and extracellular invaders into the anterior horn and are frequently located near capillaries. They provoke a glial response. The organisms have some myxosporidan features (7) and are tentatively classified as cnidosporidans.  相似文献   

12.
13.
Four phases of neural crest migration characteristic of early avian trunk regions are described: (a) appearance, during which crest cells reside in the dorsal neural tube, but are separated from each other dorsally by large spaces; (b) condensation, during which large spaces between the crest cells become reduced, the cells elongate, flatten upon the surface of the neural tube, and become oriented tangentially (i.e., with their long axes perpendicular to the longitudinal axes of the neural tube); (c) early migration, during which the crest population expands uniformly to meet the dorsal apex of the somites; and (d) advanced migration, during which crest cells appear in the extracellular space dorsal to the somites. At the most advanced phases, the crest population at the dorsal midline decreased in number, with a concomitant loss of tangential orientation and the appearance of spaces between the cells. Extracellular components of the acellular spaces through which crest cells migrate are also described. The observations are discussed in terms of (1) those morphological changes undergone by crest cells during migration, and (2) possible factors that might delimit crest pathways. It is suggested that the operation of contact inhibition of movement within the crest population is sufficient to determine the direction of crest migration.  相似文献   

14.
The complex embryonic phenotype of mutations in the faint little ball (flb) locus, encoding the Drosophila EGF receptor homolog (DER), was dissected by temperature shifts of a temperature-sensitive allele. We show that the phenotype can be resolved into at least five components, which are temporally and spatially distinct. Most notably, the central nervous system (CNS) phenotype is determined at two separate phases. A severe collapse results from early defects in the DER-expressing ectodermal cells from which neuroblasts and midline glial cells deaminate. We thus suggest that DER activity is crucial for interactions that occur in the ectoderm at an early stage, and determine the fate of neuronal and glial cell lineages. This finding explains how a severe CNS phenotype is generated in flb embryos, in spite of the absence of expression of the protein in neuronal cells. In a second phase, during germ band retraction, the flb function is required specifically in the three pairs of midline glial cells (MG). In the absence of a functional DER protein, these cells die or fail to differentiate correctly, resulting in a fused commissure phenotype.  相似文献   

15.
The anterior commissure (AC) is one of the important commissure projections in the brain that conveys information from one side of the nervous system to the other. During development, the axons from the anterior AC (aAC) and the posterior AC (pAC) course in the same dorsoventral plane and converge into a common fascicle for midline crossing. Previously, we reported that Tsukushi (TSK), a member of the secreted small leucine rich repeat proteoglycan family, functions as a key coordinator of multiple pathways outside of cells through the regulation of an extracellular signaling network. Here, we show evidence that TSK is critical for the formation of the AC. In mice lacking TSK, the aAC and the pAC axons fail to cross the midline, leading to an almost total absence of the AC in adult mice. DiI labeling indicated that the aAC axons grew out from the anterior olfactory nucleus and migrated along normal pathways but never crossed the midline. Therefore, we have uncovered a crucial role for TSK for AC formation in the mouse brain.  相似文献   

16.
17.
The longitudinal glia (LG), progeny of a single glioblast, form a scaffold that presages the formation of longitudinal tracts in the ventral nerve cord (VNC) of the Drosophila embryo. The LG are used as a substrate during the extension of the first axons of the longitudinal tract. I have examined the differentiation of the LG in six mutations in which the longitudinal tracts were absent, displaced, or interrupted to determine whether the axon tract malformations may be attributable to disruptions in the LG scaffold. Embryos mutant for the gene prospero had no longitudinal tracts, and glial differentiation remained arrested at a preaxonogenic state. Two mutants of the Polycomb group also lacked longitudinal tracts; here the glia failed to form an oriented scaffold, but cytological differentiation of the LG was unperturbed. The longitudinal tracts in embryos mutant for slit fused at the VNC midline and scaffold formation was normal, except that it was medially displaced. Longitudinaltracts had intersegmental interruptions in embryos mutant for hindsight and midline. In hindsight, there were intersegmental gaps in the glial scaffold. In midline, the glial scaffold retracted after initial extension. LG morphogenesis during axonogenesis was abnormal in midline. Commitment to glial identity and glial differentiation also occurred before scaffold formation. In all mutants examined, the early distribution of the glycoprotein neuroglian was perturbed. This was indicative of early alterations in VNC pattern present before LG scaffold formation began. Therefore, some changes in scaffold formation may have reflected changes in the placement and differentiation of other cells of the VNC. In all mutants, alterations in scaffold formation preceded longitudinal axon tract formation. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The structure and histochemistry of the solid style of Nicotiana sylvestris Speg. and Comes have been studied by light and electron microscopy. The transmitting tissue develops large intercellular spaces filled with secretions rich in proteins and carbohydrates during maturation. The cells possess large nuclei, numerous plastids with starch grains, mitochondria, ribosomes and well developed endoplasmic reticulum and golgi apparatus. The plastids in the stylar region immediately below the stigma produce electron-dense osmiophilic substances which are probably transferred into the cytoplasm by a process resembling budding-off of vesicles. The Golgi apparatus may use the starch grains as a source of sugars for the synthesis and secretion of extracellular polysaccharides. The structural and cytochemical differences between the glandular cells of the stigma and the stylar transmitting tissue are discussed.  相似文献   

19.
C. Gely  M. Wright 《Protoplasma》1986,132(1-2):23-31
Summary In the amoebae of the myxomycetePhysarum polycephalum, procentrioles are formed on the anterior and posterior centrioles in early prophase. Although the relative position of the parental and procentrioles is fixed, all relative positions of the daughter and parental centrioles were observed. During the different stages of mitosis daughter centrioles elongate and acquire anterior satellites, one of the characteristic features of the anterior centrioles. All other anterior morphological characteristics appear only in telophase and early reconstruction stages. In contrast to the parental posterior centrioles, which do not change morphologically during the successive mitotic stages, the parental anterior centrioles lose their morphological characteristics in late prophase and early prometaphase and then acquire the morphological features characteristic of the posterior centrioles. Thus, the following maturation scheme is suggested: a procentriole becomes an anterior centriole during the first mitosis and a posterior centriole during the second mitosis. Since posterior features are maintained during mitosis, the posterior centriole corresponds to the final state of centriole maturation.  相似文献   

20.
 Glial cells are involved in several functions during the development of the nervous system. To understand potential glial contributions to neuropile formation, we examined the cellular pattern of glia during the development of the mushroom body, antennal lobe and central complex in the brain of the honeybee. Using an antibody against the glial-specific repo-protein of Drosophila, the location of the glial somata was detected in the larval and pupal brain of the bee. In the early larva, a continuous layer of glial cell bodies defines the boundaries of all growing neuropiles. Initially, the neuropiles develop in the absence of any intrinsic glial somata. In a secondary process, glial cells migrate into defined locations in the neuropiles. The corresponding increase in the number of neuropile-associated glial cells is most likely due to massive immigrations of glial cells from the cell body rind using neuronal fibres as guidance cues. The combined data from the three brain regions suggest that glial cells can prepattern the neuropilar boundaries. Received: 3 November 1996 / Accepted: 7 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号