首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We employed Caenorhabditis elegans as a model to study the effectiveness of sanitizers in killing pathogenic Escherichia coli strains ingested by free-living nematodes. Adult worms that had fed on six pathogenic E. coli strains (highly persistent in the nematode intestine) were treated with three chemical solutions. In planktonic cells, none of the H2O2 and acetic acid treatments influenced the survival of the pathogenic E. coli strains, whereas sodium hypochlorite critically decreased the viability of the strains. Importantly, the survival of the E. coli strains was dramatically increased by persistence in the C. elegans gut under 0.1% sodium hypochlorite, and several strains could survive at a concentration of 0.5%. In addition, all pathogenic E. coli strains in the C. elegans gut survived on the lettuce for 5?days even though they were washed with 0.1% sodium hypochlorite. Taken together, our results indicate that pathogenic E. coli ingested by C. elegans may be protected against washing treatment with commercial sanitizers on raw food materials.  相似文献   

2.
The dynamic properties of protein molecules are involved in the relationship between their structure and function. Time-resolved X-ray observation enables capturing the structures of biomolecules with picometre-scale precision. However, this technique has yet to be implemented in living animals. Here, we examined diffracted X-ray blinking (DXB) and diffracted X-ray tracking (DXT) to observe the dynamics of a protein located on intestinal cells in adult Caenorhabditis elegans. This in vivo tissue-specific DXB was examined at temperatures from 20 °C to ?10 °C for a recombinant ice-binding protein from Antarctomyces psychrotrophicus (AnpIBP) connected with the cells through a transmembrane CD4 protein equipped with a glycine-serine linker. AnpIBP inhibits ice growth at subzero temperatures by binding to ice crystals. We found that the rotational motion of AnpIBP decreases at ?10 °C. In contrast, the motion of the AnpIBP mutant, which has a defective ice-binding ability, did not decrease at ?10 °C. The twisting and tilting motional speeds of AnpIBPs measured above 5 °C by DXT were always higher than those of the defective AnpIBP mutant. These results suggest that wild-type AnpIBP is highly mobile in solution, and it is halted at subzero temperatures through ice binding. DXB and DXT allow for exploring protein behaviour in live animals with subnano resolution precision.  相似文献   

3.
Glucose-dependent insulinotropic polypeptide (GIP) is a forty-two amino acid hormone that stimulates the secretion of insulin from the pancreatic B-cells in the presence of elevated glucose concentrations. The human GIP gene with the human A-fibrinopeptide sequence was synthesized and linked to the Staphylococcus aureus protein A gene in the vector pRIT2T. This plasmid was expressed in Escherichia coli, and the resulting fusion protein consisted of three domains: protein A for ease of purification, fibrinopeptide sequence for thrombin cleavage and human GIP. The GIP was subsequently cleaved from the fusion protein with -thrombin. The identity of the recombinant human GIP was confirmed by SDS-PAGE, ELISA, HPLC and amino-terminal amino acid sequence analysis. This recombinant product was shown to have comparable insulinotropic activity to porcine GIP in the isolated perfused pancreas.  相似文献   

4.
Caenorhabditis elegans has often been used as a model system in studies of early developmental processes. The transparency of the embryos, the genetic resources, and the relative ease of transformation are qualities that make C. elegans an excellent model for early embryogenesis. Laser-based confocal microscopy and fluorescently labeled tags allow researchers to follow specific cellular structures and proteins in the developing embryo. For example, one can follow specific organelles, such as lysosomes or mitochondria, using fluorescently labeled dyes. These dyes can be delivered to the early embryo by means of microinjection into the adult gonad. Also, the localization of specific proteins can be followed using fluorescent protein tags. Examples are presented here demonstrating the use of a fluorescent lysosomal dye as well as fluorescently tagged histone and ubiquitin proteins. The labeled histone is used to visualize the DNA and thus identify the stage of the cell cycle. GFP-tagged ubiquitin reveals the dynamics of ubiquitinated vesicles in the early embryo. Observations of labeled lysosomes and GFP:: ubiquitin can be used to determine if there is colocalization between ubiquitinated vesicles and lysosomes. A technique for the microinjection of the lysosomal dye is presented. Techniques for generating transgenenic strains are presented elsewhere (1, 2). For imaging, embryos are cut out of adult hermaphrodite nematodes and mounted onto 2% agarose pads followed by time-lapse microscopy on a standard laser scanning confocal microscope or a spinning disk confocal microscope. This methodology provides for the high resolution visualization of early embryogenesis.  相似文献   

5.
We create and share a new red fluorophore, along with a set of strains, reagents and protocols, to make it faster and easier to label endogenous Caenorhabditis elegans proteins with fluorescent tags. CRISPR-mediated fluorescent labeling of C. elegans proteins is an invaluable tool, but it is much more difficult to insert fluorophore-size DNA segments than it is to make small gene edits. In principle, high-affinity asymmetrically split fluorescent proteins solve this problem in C. elegans: the small fragment can quickly and easily be fused to almost any protein of interest, and can be detected wherever the large fragment is expressed and complemented. However, there is currently only one available strain stably expressing the large fragment of a split fluorescent protein, restricting this solution to a single tissue (the germline) in the highly autofluorescent green channel. No available C. elegans lines express unbound large fragments of split red fluorescent proteins, and even state-of-the-art split red fluorescent proteins are dim compared to the canonical split-sfGFP protein. In this study, we engineer a bright, high-affinity new split red fluorophore, split-wrmScarlet. We generate transgenic C. elegans lines to allow easy single-color labeling in muscle or germline cells and dual-color labeling in somatic cells. We also describe a novel expression strategy for the germline, where traditional expression strategies struggle. We validate these strains by targeting split-wrmScarlet to several genes whose products label distinct organelles, and we provide a protocol for easy, cloning-free CRISPR/Cas9 editing. As the collection of split-FP strains for labeling in different tissues or organelles expands, we will post updates at doi.org/10.5281/zenodo.3993663  相似文献   

6.
Virtually all age-related neurodegenerative diseases (NDs) can be characterized by the accumulation of proteins inside and outside the cell that are thought to significantly contribute to disease pathogenesis. One of the cell’s primary systems for the degradation of misfolded/damaged proteins is the ubiquitin proteasome system (UPS), and its impairment is implicated in essentially all NDs. Thus, upregulating this system to combat NDs has garnered a great deal of interest in recent years. Various animal models have focused on stimulating 26S activity and increasing 20S proteasome levels, but thus far, none have targeted intrinsic activation of the 20S proteasome itself. Therefore, we constructed an animal model that endogenously expresses a hyperactive, open gate proteasome in Caenorhabditis elegans. The gate-destabilizing mutation that we introduced into the nematode germline yielded a viable nematode population with enhanced proteasomal activity, including peptide, unstructured protein, and ubiquitin-dependent degradation activities. We determined these nematodes showed a significantly increased lifespan and substantial resistance to oxidative and proteotoxic stress but a significant decrease in fecundity. Our results show that introducing a constitutively active proteasome into a multicellular organism is feasible and suggests targeting the proteasome gating mechanism as a valid approach for future age-related disease research efforts in mammals.  相似文献   

7.
8.
Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein’s function. We present Caenorhabditiselegans light-induced coclustering (CeLINC), an optical binary protein–protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein–protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Colocalization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.  相似文献   

9.
Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans   总被引:4,自引:0,他引:4  
Protein synthesis is a regulated cellular process that links nutrients in the environment to organismal growth and development. Here we examine the role of genes that regulate mRNA translation in determining growth, reproduction, stress resistance and lifespan. Translational control of protein synthesis by regulators such as the cap-binding complex and S6 kinase play an important role during growth. We observe that inhibition of various genes in the translation initiation complex including ifg-1, the worm homologue of eIF4G, which is a scaffold protein in the cap-binding complex; and rsks-1, the worm homologue of S6 kinase, results in lifespan extension in Caenorhabditis elegans. Inhibition of ifg-1 or rsks-1 also slows development, reduces fecundity and increases resistance to starvation. A reduction in ifg-1 expression in dauers was also observed, suggesting an inhibition of protein translation during the dauer state. Thus, mRNA translation exerts pleiotropic effects on growth, reproduction, stress resistance and lifespan in C. elegans.  相似文献   

10.
11.
Molecular genetics in lower organisms has allowed the elucidation of pathways that modulate the aging process. In certain instances, evolutionarily conserved genes and pathways have been shown to regulate lifespan in mammals as well. Many gene products known to affect lifespan are intimately involved in the control of energy metabolism, including the fuel sensor AMP-activated protein kinase (AMPK). We have shown previously that over-expression of an AMPK alpha subunit in Caenorhabditis elegans, designated aak-2, increases lifespan. Here we show the interaction of aak-2 with other pathways known to control aging in worms. Lifespan extension caused by daf-2/insulin-like signaling mutations was highly dependent on aak-2, as was the lifespan extension caused by over-expression of the deacetylase, sir-2.1. Similarly, there was partial requirement for aak-2 in lifespan extension by mitochondrial mutations (isp-1 and clk-1). Conversely, aak-2 was not required for lifespan extension in mutants lacking germline stem cells (glp-1) or mutants of the eating response (eat-2). These results show that aging is controlled by overlapping but distinct pathways and that AMPK/aak-2 represents a node in a network of evolutionarily conserved biochemical pathways that control aging.  相似文献   

12.
Im SH  Lee J 《FEBS letters》2003,554(3):455-461
Many protein components of telomeres, the multifunctional DNA-protein complexes at the ends of eukaryotic chromosomes, have been identified in diverse species ranging from yeast to humans. In Caenorhabditis elegans, CEH-37 has been identified by a yeast one hybrid screen to be a double-stranded telomere-binding protein. However, the role of CEH-37 in telomere function is unclear because a deletion mutation in this gene does not cause severe telomere defects. This observation raises the possibility of the presence of genetic redundancy. To identify additional double-stranded telomere-binding proteins in C. elegans, we used a different approach, namely, a proteomic approach. Affinity chromatography followed by Finnigan LCQ ion trap mass spectrometer analysis allowed us to identify several candidate proteins. We further characterized one of these, HMG-5, which is encoded by F45E4.9. HMG-5 bound to double-stranded telomere in vitro as shown by competition assays. At least two telomeric DNA repeats were needed for this binding. HMG-5 was expressed in the nuclei of the oocytes and all embryonic cells, but not in the hatched larvae or adults. HMG-5 mainly localized to the chromosomal ends, indicating that HMG-5 also binds to telomeres in vivo. These observations suggest that HMG-5 may participate, together with CEH-37, in early embryogenesis by acting at the telomeres.  相似文献   

13.
In Caenorhabditis elegans, the insulin/IGF pathway participates in the decision to initiate dauer development. Dauer is a diapause stage that is triggered by environmental stresses, such as a lack of nutrients. Insulin/IGF receptor mutants arrest constitutively in dauer, an effect that can be suppressed by mutations in other elements of the insulin/IGF pathway or by a reduction in the activity of the nuclear hormone receptor daf‐12. We have isolated a pkc‐1 mutant that acts as a novel suppressor of the dauer phenotypes caused by insulin/IGF receptor mutations. Interactions between insulin/IGF mutants and the pkc‐1 suppressor mutant are similar to those described for daf‐12 or the DAF‐12 coregulator din‐1. Moreover, we show that the expression of the DAF‐12 target daf‐9, which is normally elevated upon a reduction in insulin/IGF receptor activity, is suppressed in a pkc‐1 mutant background, suggesting that pkc‐1 could link the daf‐12 and insulin/IGF pathways. pkc‐1 has been implicated in the regulation of peptide neurosecretion in C. elegans. Although we demonstrate that pkc‐1 expression in the nervous system regulates dauer formation, our results suggest that the requirement for pkc‐1 in neurosecretion is independent of its role in modulating insulin/IGF signalling. pkc‐1 belongs to the novel protein kinase C (nPKC) family, members of which have been implicated in insulin resistance and diabetes in mammals, suggesting a conserved role for pkc‐1 in the regulation of the insulin/IGF pathway.  相似文献   

14.
The polyadic synapse, where a single presynaptic active zone associates with two or more postsynaptic cells, exists in both mammals and invertebrates. An important but unresolved question is whether synaptic transmission occurs between the presynaptic site and its various postsynaptic partners. Using the dual whole-cell voltage clamp technique, we analyzed miniature postsynaptic currents (mPSCs or minis) at the C. elegans neuromuscular junction (NMJ), which is a polyadic synapse. We found that neighboring muscle cells at the same position along the body axis had high frequencies of concurrent mPSCs, which could not be explained by pure chance. Although body-wall muscle cells are electrically coupled, the high frequency of concurrent mPSCs was not due to electrical coupling because there was no correlation between the frequency of concurrent mPSCs and the degree of electrical coupling; the rise time of concurrent mPSCs was identical to that of nonconcurrent mPSCs but distinct from that of junctional currents (I(j)); and a mutant defective in electrical coupling showed normal frequency of concurrent mPSCs. Our analyses suggest that a single quantum of neurotransmitter may cause mPSCs in multiple postsynaptic cells at polyadic synapses, and that high-fidelity synaptic transmission occurs between the presynaptic site and its various postsynaptic partners. Thus, polyadic synapses could be a distinct mechanism for synaptic divergence and for synchronizing activities of postsynaptic cells.  相似文献   

15.
Previously we reported that CFL-1, the single LRR-type F-box protein in the Caenorhabditis elegans genome, affected defecation behavior and daumone response. CFL-1 is highly homologous to the FBXL20 in mammals, which regulates synaptic vesicle release by targeting its substrate Rim1 for ubiquitin-mediated degradation. The worm homolog of Rim1 is UNC-10, a presynaptic membrane protein that triggers synaptic vesicle fusion through interaction with RAB-3 GTPase. To examine if CFL-1 exerts its modulatory effect on the defecation and daumone response via ubiquitination of UNC-10, we performed RNAi knock-down of CFL-1 in the unc-10(e102) mutant background. We noticed additive increase in defecation interval when the activities of both CFL-1 and UNC-10 were compromised. Also, the degree of dauer formation upon daumone treatment in unc-10 mutants treated with CFL-1 RNAi decreased further than the level observed in untreated mutants or wild type N2 worms with CFL-1 RNAi knock-down. Our data suggest that CFL-1 affects defecation frequency and daumone response in C. elegans through the ubiquitination of UNC-10.  相似文献   

16.
This paper reports on the isolation of a cDNA clone ( tba-6 ) encoded by a novel a-tubulin gene in the nematode C. elegans . The tba-6 gene is located on chromosome I, that encode a protein of 460 amino acids, as well as the expression of the gene during the development. Here we discuss the structure of the coding region and the regulatory sequences in the promoter region. The comparison of the amino acid sequence of TBA6 with other α-tubulin isotypes of C. elegans , suggests that these proteins are highly conserved in most of the N-terminal and intermediate sequence, but they have highly divergent C-terminal sequences. TBA6 has also high homology with other α-tubulin families (e.g. human, mouse, Drosophila melangaster ). The in situ experiment results suggest that the tba-6 α-tubulin gene is required during the entire embryonic development, therefore it is required during the early cell division stages. Further, we determined the 3D structure of C. elegans TBA6 α-tubulin by altering (computationally) the crystal structure of the α-tubulin (TBA_pig) from porcine α-β tubulin dimer. We discuss structural conservation and changes in the pattern of interactions between secondary structure elements of TBA_pig and TBA6, respectively.  相似文献   

17.
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.  相似文献   

18.
The gelsolin family of actin regulatory proteins is activated by Ca(2+) to sever and cap actin filaments. Gelsolin has six homologous gelsolin-like domains (G1-G6), and Ca(2+)-dependent conformational changes regulate its accessibility to actin. Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) has only four gelsolin-like domains (G1-G4) and still exhibits Ca(2+)-dependent actin filament-severing and -capping activities. We found that acidic residues (Asp-83 and Asp-84) in G1 of GSNL-1 are important for its Ca(2+) activation. These residues are conserved in GSNL-1 and gelsolin and previously implicated in actin-severing activity of the gelsolin family. We found that alanine mutations at Asp-83 and Asp-84 (D83A/D84A mutation) did not disrupt actin-severing or -capping activity. Instead, the mutants exhibited altered Ca(2+) sensitivity when compared with wild-type GSNL-1. The D83A/D84A mutation enhanced Ca(2+) sensitivity for actin severing and capping and its susceptibility to proteolytic digestion, suggesting a conformational change. Single mutations caused minimal changes in its activity, whereas Asp-83 and Asp-84 were required to stabilize Ca(2+)-free and Ca(2+)-bound conformations, respectively. On the other hand, the D83A/D84A mutation suppressed sensitivity of GSNL-1 to phosphatidylinositol 4,5-bisphosphate inhibition. The structure of an inactive form of gelsolin shows that the equivalent acidic residues are in close contact with G3, which may maintain an inactive conformation of the gelsolin family.  相似文献   

19.
Cardiolipin (CL) is a major membrane phospholipid specifically localized in mitochondria. At the cellular level, CL has been shown to have a role in mitochondrial energy production, mitochondrial membrane dynamics, and the triggering of apoptosis. However, the in vivo role of CL in multicellular organisms is largely unknown. In this study, by analyzing deletion mutants of a CL synthase gene (crls-1) in Caenorhabditis elegans, we demonstrated that CL depletion selectively caused abnormal mitochondrial function and morphology in germ cells but not in somatic cell types such as muscle cells. crls-1 mutants reached adulthood but were sterile with reduced germ cell proliferation and impaired oogenesis. In the gonad of crls-1 mutants, mitochondrial membrane potential was significantly decreased, and the structure of the mitochondrial cristae was disrupted. Contrary to the abnormalities in the gonad, somatic tissues in crls-1 mutants appeared normal with respect to cell proliferation, mitochondrial function, and mitochondrial morphology. Increased susceptibility to CL depletion in germ cells was also observed in mutants of phosphatidylglycerophosphate synthase, an enzyme responsible for producing phosphatidylglycerol, a precursor phospholipid of CL. We propose that the contribution of CL to mitochondrial function and morphology is different among the cell types in C. elegans.  相似文献   

20.
The Patched-related superfamily of transmembrane proteins can transport lipids or other hydrophobic molecules across cell membranes. While the Hedgehog receptor Patched has been intensively studied, much less is known about the biological roles of other Patched-related family members. Caenorhabditis elegans has a large number of Patched-related proteins, despite lacking a canonical Hedgehog pathway. Here, we show that PTR-4 promotes the assembly of the precuticle apical extracellular matrix, a transient and molecularly distinct matrix that precedes and patterns the later collagenous cuticle or exoskeleton. ptr-4 mutants share many phenotypes with precuticle mutants, including defects in eggshell dissolution, tube shaping, alae (cuticle ridge) structure, molting, and cuticle barrier function. PTR-4 localizes to the apical side of a subset of outward-facing epithelia, in a cyclical manner that peaks when precuticle matrix is present. Finally, PTR-4 is required to limit the accumulation of the lipocalin LPR-3 and to properly localize the Zona Pellucida domain protein LET-653 within the precuticle. We propose that PTR-4 transports lipids or other hydrophobic components that help to organize the precuticle and that the cuticle and molting defects seen in ptr-4 mutants result at least in part from earlier disorganization of the precuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号